• Title/Summary/Keyword: Rotorcraft Design

Search Result 96, Processing Time 0.025 seconds

Detailed Design of an Active Rotor Blade for Reducing Helicopter Vibratory Loads

  • Natarajan, Balakumaran;Eun, Won-Jong;Shin, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.236-241
    • /
    • 2011
  • An active trailing-edge flap blade named as Seoul National University Flap (SNUF) blade is designed for reducing helicopter vibratory loads and the relevant aeroacoustic noise. Unlike the conventional rotor control, which is restricted to 1/rev frequency, an active control device like the present trailing-edge flap is capable of actuating each individual blade at higher harmonic frequencies i.e., higher harmonic control (HHC) of rotor. The proposed blade is a small scale blade and rotates at higher RPM. The flap actuation components are located inside the blade and additional structures are included for reinforcement. Initially, the blade cross-section design is determined. The aerodynamic loads are predicted using a comprehensive rotorcraft analysis code. The structural integrity of the active blade is verified using a stress-strain recovery analysis.

  • PDF

Kinematic design improvement and validation of ATF(Active Trailing-edge Flap) for helicopter vibration reduction (헬리콥터의 진동하중 저감을 위한 능동 뒷전플랩의 기구학적 설계 개선 및 검증)

  • Kang, JungPyo;Eun, WonJong;Lim, JaeHoon;Visconti, Umberto;Shin, SangJoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.916-921
    • /
    • 2014
  • In this paper, an improved small-scaled blade prototype was designed with the flap-driving mechanism classified as an active vibration reduction method, in order to reduce vibratory load in the helicopter. In detail, the previous Active Trailing-Edge Flap based on piezoelectric actuator, called SNUF(Seoul National University Flap), failed to achieve the target value (${\pm}4^{\circ}$) of the flap deflection angle. Therefore, the flap-driving mechanism design was improved, and a new piezoactuator was selected to accomplish the target value of the flap deflection angle in both static and rotating situations.

  • PDF

Particle Swarm Assisted Genetic Algorithm for the Optimal Design of Flexbeam Sections

  • Dhadwal, Manoj Kumar;Lim, Kyu Baek;Jung, Sung Nam;Kim, Tae Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2013
  • This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.

Numerical Simulation of Full-Scale Crash Impact Test for Fuel Cell of Rotorcraft (회전익항공기 연료셀 충돌충격시험 Full-Scale 수치모사)

  • Kim, Hyun-Gi;Kim, Sung Chan;Kim, Sung Jun;Kim, Soo Yeon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.343-349
    • /
    • 2013
  • Crashworthy fuel cells have a great influence on improving the survivability of crews. Since 1960's, the US army has developed a detailed military specification, MIL-DTL-27422, defining the performance requirements for rotorcraft fuel cells. In the qualification tests required by MIL-DTL-27422, the crash impact test should be conducted to verify the crashworthiness of fuel cell. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. Because the crash impact test itself takes a long-term preparation efforts together with costly fuel cell specimens, the failure of crash impact test can result in serious delay of a entire rotorcraft development. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error with full-scale fuel cells. Present study performs the numerical simulation using SPH(smoothed particle hydro-dynamic) method supported by a crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the resulting equivalent stresses of fuel cell itself are calculated and vulnerable areas are also evaluated.

Study on the Phase II Qualification Test for Fuel Cell of Rotorcraft (회전익항공기용 연료셀 Phase II 인증시험에 대한 고찰)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1054-1060
    • /
    • 2013
  • Fuel tank of a rotorcraft has a great influence on the survivability of crews. For a long time, US army has tried to develop the proper material for fuel cell of a military rotorcraft. As a result, the design specification of fuel cell, MIL-T-27422A, was issued for the first time on 1961. Through a few revisions, it has been developed to ML-DTL-27422D in 2007. It should be assured that fuel cell satisfies the requirement defined in MIL-DTL-27422D. The qualification test of this specification is classified into Phase I test for material and Phase II for fuel cell itself. This paper studies test conditions and procedures of slosh & vibration, gunfire resistance and crash impact test. They are considered as the most important tests which have a high possibility of failure. The rational consideration of this paper can improve the ability for estimating not only the validity of test procedure and test condition but test result. Based on the rational consideration, it is expected that the ability of the systematic development can be improved.

A Study on the Verification of Crashworthiness for Fuel System of Military Rotorcraft (군용 회전익항공기 연료계통 내추락성 입증에 관한 연구)

  • Sangsoo Park;Junmo Yang;Munguk Kim;Jaechul Kim
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.1
    • /
    • pp.16-23
    • /
    • 2023
  • The aircraft fuel system performs a number of functions such as supplying fuel, transferring fuel between fuel tanks, and measuring the amount of residual fuel in each fuel tank. Since it is a direct cause of fire hazard in crash incident, it is a must to improve survivability of crew members by designing the airframe to tolerate expected crash impact. The civil aviation authority requires intensive verification of the fuel system design to determine precise application of the airworthiness requirement. Research activity on airworthiness certification criteria and verification scheme is still insufficient, although it has a significant importance. In this paper, as part of a study to improve flight safety by developing guidelines for demonstrating fuel system crash resistance, analysis results of fuel system crash-related airworthiness certification standards, verification scheme, and cases study applicable to military rotorcraft have been reviewed.

Analysis of Crash Load in Crash Impact Test for Fuel Tank of Rotorcraft (항공기용 연료탱크 Phase I 충돌충격시험 충격하중 분석)

  • Kim, Hyun-gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.3736-3741
    • /
    • 2015
  • Crash impact test is conducted to verify the crashworthiness of fuel tank. Success of the crash impact test means the improvement of survivability of crews by preventing post-crash fire. But, there is a big risk of failure due to huge external load in the crash impact test. The failure of crash impact test can result in serious delay of a entire rotorcraft development because of the design complement and re-production of the test specimens requiring a long-term preparation. Thus, the numerical simulations of the crash impact test has been required at the early design stage to minimize the possibility of trial-and-error in the real test. Present study conducts on the numerical simulation of phase I crash impact test using SPH supported by crash simulation software, LS-DYNA. Test condition of MIL-DTL-27422 is reflected on analysis and material data is acquired by specimen test of fuel cell material. As a result, the crash load on the skin material, overlap area and metal fitting is estimated to confirm the possibility of acquisition of the design load for the determination of the overlap area and adhesive strength.

Design Update of Transition Scheduler for Smart UAV (스마트 무인기의 천이 스케줄러 설계개선)

  • Kang, Y.S.;Yoo, C.S.;Kim, Y.S.;An, S.J.
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.13 no.2
    • /
    • pp.14-26
    • /
    • 2005
  • A tilt-rotor aircraft has various flight modes : helicopter, airplane, and conversion. Each of flight mode has unique and nonlinear flight characteristics. Therefore the gain schedules for whole flight envelope are required for effective flight performance. This paper proposes collective, flap, and nacelle angle scheduler for whole flight envelope of the Smart UAV(Unmanned Air Vehicle) based on CAMRAD(Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics) II analysis results. The scheduler designs are improved so that the pitch attitude angle of helicopter mode was minimized. The range of scheduler are reduced inside of engine performance limits. The conversion corridor and rotor governor are suggested also.

  • PDF

The Relative Analysis of the Civil Helicopter Accident (민수용 헬리콥터의 사고 비교분석)

  • Lee, Jung-Hoon;Ahn, Iee-Ki
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.15 no.1
    • /
    • pp.18-25
    • /
    • 2007
  • The safety should be primarily considered for air vehicle, such as helicopter, which is not easy to cope with when out of order or loss of control that followed catastrophe. The U.S National Transportation Safety Board (NTSB) investigated and analyzed for 34 years rotorcraft accidents that occurred from 1963 through 1997. This paper handles intensively the relative investigation and analysis of recent 10 years domestic civil helicopter accidents to those of the United States in order to increase the safety of helicopter transportation and to consider the main design parameter before we develop Korean Civil Helicopter. To understand the overview of civil turbine helicopter accident, it uses the NTSB's accident investigation results and the overall accident trend for U.S civil single and twin turbine engine helicopter according to category, cause, activity, and phase of operation.

  • PDF

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • Gang, Yu-Jin;Sim, Ji-Su
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF