• Title/Summary/Keyword: Rotor shape

Search Result 446, Processing Time 0.031 seconds

Optimum Design For Premium Efficiency of 250kW Traction Induction Motor Using Response Surface Methodology & FEM (반응표면법과 유한요소법을 이용한 250kW급 견인 유도전동기의 고효율을 위한 최적 설계)

  • Cho, Yong-Hyun;Lim, Hwang-Bin;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.782-783
    • /
    • 2008
  • This paper deals with optimum design criteria for premium efficiency of 250kW traction induction motor using response surface methodology (RSM) & finite element method (FEM). The RSM has been achieved to use the experimental design method in combination with Finite Element Method and well adapted to make analytical model for a complex problem considering a lot of interaction of design variables. The proposed procedure allows to define the rotor copper bar shape, stator slot and stator, rotor dimensions starting from an existing motor or a preliminary design.

  • PDF

A Study on the Improvement of Dynamic Characteristics in Interior Permanent Magnet motor by Rotor Shape Design (동특성 향상을 위한 매입형 영구자석 전동기의 회전자 형상 설계)

  • Yun, Byung-Chae;Lee, Dong-Yeup;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.862-863
    • /
    • 2008
  • This paper presents the improvement of dynamic characteristics in Interior Permanent Magnet (IPM) type BLDC motor with notch. The notch is applied on the surface of the rotor to reduce the cogging torque and to improve dynamic characteristics. The current, inductance and torque of initial model and optimal model are analyzed by FEA. The validity of improved dynamic characteristics is confirmed.

  • PDF

The study on the vibration characteristic of IPM motor according to the notch design (Notch 설계에 따른 매입형영구자석형 전동기의 진동특성 고찰)

  • Lee, Seung-Hoon;Ahn, Ho-Jin;Kang, Gyu-Hong;Jang, Ki-Bong;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2008.10c
    • /
    • pp.47-49
    • /
    • 2008
  • This paper presents the vibration characteristic of interior type permanent magnet (IPM) motor according to rotor design. In the design methods, the optimal notchs are put on the rotor pole face, which have an effect on variation of permanent magnet (PM) shape or residual flux density of PM. Through the space harmonics field analysis, the positions of notch are found and the optimal shapes of notch are decided by using Finite Element Method (FEM). The validity of the proposed method is confirmed with experiments. Therefore, the vibration, starting current and efficiency of IPM is measured by experiment.

  • PDF

Numerical Investigation of the Effect of Turbine flow Passage Variation on the Turbine Performance (유로형상변화에 따른 터빈성능 변화의 수치적 해석)

  • Park, Pyun-Goo;Jeong, Eun-Hwan;Kim, Jin-Han
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.481-487
    • /
    • 2005
  • A turbopump turbine consists of rotational part including a rotor and stationary part including nozzles and exit guide vanes, of which shape and relative position affect turbine performance owing to supersonic flows with prevailing unsteadiness. In this study, numerical 3-D flow calculations of the turbine with the different number of exit guide vanes and different relative position of each component are conducted and the effect of flow passage variations on turbine performance is analyzed.

  • PDF

Design of 5kW-class Horizontal Axis Wind Turbine using In-house Code POSEIDON (In-house 코드 POSEIDON을 이용한 5kW급 수평축 풍력발전용 로터 블레이드 형상설계)

  • Kim, Ki-Pyoung;Kim, Ill-Soo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.492-492
    • /
    • 2009
  • Nowadays in Republic of Korea, there is no distinct reference for the related design technology of rotor blade of wind turbine. Therefore the optimum design and evaluation of performance is carried out with foreign commercial code softwares. This paper shows in-house code software that evaluates the aerodynamic design of wind turbine rotor blade using blade element-momentum theory (BEMT) and processes that is applied through various aerodynamics theories such as momentum theory, blade element theory, prandtl's tip loss theory and strip theory. This paper presents the results of the numerical analysis such as distribution of aerodynamic properties and performance curves using in-house code POSEIDON.

  • PDF

Optimal Design Strategy on Balance Shaft (밸런스 샤프트 설계를 위한 최적화 설계기법 연구)

  • Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun;Kwon, Seong-Jin;Na, Byung-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.314-319
    • /
    • 2006
  • Main focus on balance shaft module is to reduce the vibration triggered from engine block and compensate it from unbalance mass in balance shaft. Since the performance of balance shaft module is controlled by rotor shape including unbalance mass, a design strategy on rotor is key issue on determine the quality of balance shaft system. Even the design result on balance shaft mostly affect the lay-out of housing and other related components, its issue on balance shaft should be considered in advance throughout the total design procedure. In this paper, optimal design strategy focused on balance shaft is presented to make a design process efficiently with ensuring its high performance. And its method is verified with field design process of balance shaft in commonly adapted vehicle with 3-cylinder and 4-cylinder engine.

  • PDF

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependent on Shape of the Stator (스테이터의 형태에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.433-437
    • /
    • 2005
  • This paper studied Rotary type ultrasonic motor which has cross type stator. The stator consists of hollowed cross type metal which has four piezoelectric ceramics on the ends of cross bars. When two harmonic voltages which have 90$^{\circ}$ phase difference given to ceramics, the elliptical motion was generated in the inside tips. Inside tips are contact with rotor and these elliptical motions are rotate the rotor The finite element analysis was used to optimize the dimension and displacement of the stator. And the analyzed results were compared with the experimental results of the motor. As results, the speed and the torque of motor was increased by increasing width of the cross bar. And the speed and torque o( motor was not influenced to length of cross bar. The speed and torque was linearly increased by increasing voltage. The maximum torque was generated when the motor fabricated length of cross bar and width of ceramics in the ratio of 1:2.

Fabrication of the Windmill Type Ultrasonic Its Characteristics of Torque and Bidirectional Revolution (풍차형 초음파 전동기의 제작과 토크 및 정$\cdot$역회전특성)

  • Kim, Young-Gyun;Kim, Jin-Soo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.3
    • /
    • pp.105-109
    • /
    • 2001
  • In this paper, the windmill type ultrasonic motors with 11.35 mm diameter, 2.87 mm thickness of metal endcap and 1.47 g weight were fabricated. Effects of slots and thickness on torque characteristic in the windmill type ultrasonic motor were investigated, when stator's slots were changed from 4, 6, 8 and thickness 0.15 mm, respectively. Specially designed metal endcaps with windmill shaped cutting can provide longitudinal and torsional displacements simultaneously as the ceramic disk vibrates radically. The windmill type ultrasonic motor has only three components: a stator element with windmill shape slotted metal endcap, a rotor and bearing. Ultrasonic motor stimulated to ultrasonic oscillations by piezoelectrics to drive a rotor via friction contact. The ultrasonic motor fabricated here was the windmill type ultrasonic motor operated by single-phase AC source. Bidirectional revolution using single-phase high frequency for driving the ultrasonic motor was presented.

  • PDF

Characteristic Analysis of Disk Type Single-phase Switched Reluctance Motor with Pole Shoe in Stator (회전자에 돌출구조를 가지는 디스크형 단상 스위치드 릴럭턴스 전동기의 특성 해석)

  • Lee, Min-Myung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.11
    • /
    • pp.612-615
    • /
    • 2002
  • The main advantages of Disk type Single-Phase Switched Reluctance Motor (DSPSRM) is the simple construction, rugged structure, low manufacturing cost and simple driving circuit. It is especially possible to make the short axial length of DSPSRM. Therefore, it is suitable to setup this motor in a narrow space. This paper presents the shape design to maximize the average torque of DSPSRM that is achieved by 3D Finite Element Method (3D FEM) considering the nonlinear of magnetic material. The characteristics of two different rotor shapes are compared. The design parameters, such as the rotor and stator pole arc, are selected to the parametric study. The effect of pole arc ratios on the torque performance is investigated. From these results, the optimal pole arc to produce the maximum torque is determined.

The Optimization Design of Rotor Slot shape in Outer-Rotor Type Induction Motor For Fan Blowers (송풍 팬을 위한 외전형 유도전동기의 회전자 슬롯형상의 최적화)

  • Kim, Kyung-Su;Cha, Hyun-Rok;Yun, Cheol-Ho;Jung, Tae-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.799-800
    • /
    • 2006
  • 외전형 모터는 내전형 모터에 비해 소형화 및 경량화 시킬 수 있는 특징을 가진다. 그러나 회전자와 고정자간의 공극사이에 이심률이 있을 때, 불균형 모멘트로 인한 토크 리플이 내전형보다 더 크게 일어나는 단점이 있다. 이전의 연구들은 회전자 슬롯 형상의 변화에 따른 모터의 변화를 유한요소해석법을 통해 알아보았다. 우리는 이러한 유한요소해석법을 통한 시뮬레이션을 통해 외전형 모터에서 이심률이 발생 및 증가함에 따라 나타나는 토크 리플을 줄일 수 있는 최적화된 슬롯형태를 찾아보았다.

  • PDF