• Title/Summary/Keyword: Rotor shape

Search Result 446, Processing Time 0.029 seconds

Conduction Bar Design to Improve Starting Stability of Line Start Synchronous Reluctance Motor (직립 기동형 동기 릴럭턴스 전동기의 기동 안정성 개선을 위한 도체바 설계)

  • Nam, Hyuk;Hong, Jung-Pyo;Jung, Tae-Uk
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.3
    • /
    • pp.131-137
    • /
    • 2006
  • This paper deals with the conductor bar design to improve starting stability of line start synchronous reluctance motor(LSSynRM). As design variables, the number and the shape of conductor bars of rotor are chosen. The starting characteristics are calculated by finite element method(FEM) and the conductor bars are designed to improve the starting torque according to the initial starting rotor position. Finally, the starting characteristic of the designed model are compared with that of the initial model.

Performance Improvement of High Speed Jet Fan

  • Choi, Young-Seok;Kim, Joon-Hyung;Lee, Kyoung-Yong;Yang, Sang-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.39-49
    • /
    • 2010
  • In this paper, a numerical study has been carried out to investigate the influence of jet fan design variables on the performance of a jet fan. In order to achieve an optimum jet fan design and to explain the interactions between the different geometric configurations in the jet fan, three-dimensional computational fluid dynamics and the DOE method have been applied. Several geometric variables, i.e., hub-tip ratio, meridional shape, rotor stagger angle, number of rotor-stator blades and stator geometry, were employed to improve the performance of the jet fan. The objective functions are defined as the exit velocity and total efficiency at the operating condition. Based on the results of computational analyses, the performance of the jet fan was significantly improved. The performance degradations when the jet fan is operated in the reverse direction are also discussed.

A Study on Operational Characteristics of Wind Turbine Induction Generators Interconnected with Distribution Networks Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 계통 연계 풍력 유도 발전기의 운전 특성에 관한 연구)

  • 장성일;정종찬;김광호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.704-713
    • /
    • 2002
  • This paper describes operational characteristics of wind turbine induction generators interconnected with distribution networks using PSCAD/EMTDC. Due to the simple and durable structure, induction generators are the most common type used in wind Power generation. Generally, induction generators are classified into two groups according to the shape of rotor, one is squirrel-cage type and the other is wound-rotor type. In this study, we simulate the start-up and the output variation of generators interconnected with distribution networks and compare the operational characteristics of squirrel -cage type and wound-rotor type induction generators located in the unfaulted distribution lines about the disturbance occurred on the associated distribution feeders emanated from the substation to which wind turbine generator is connected. In order to obtain the realistic results, we use the radial distribution network of IEEE 13-bus model.

Design Standard Computation based on A Rated Watt of Synchronous Reluctance Motor Using a Coupled FEM & Preisach Model (프라이자흐 모델이 결합된 유한요소법을 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 구조 설계)

  • Kwon Sun-Bum;Lee Mi-Jeong;Lee Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.893-895
    • /
    • 2004
  • This paper deals with an automatic design standard computation based on a rated watt for a synchronous reluctance motor(SynRM). The focus of this paper is the design relative to the output power on the basis of rotor shape of a SynRM in each rated watt. The copuled Finite Elements Analysis(FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor gemetric dimensions according to the rotor dia and rated watt starting from an existing motor or a preliminary design.

  • PDF

The Characteristic Improvements of One-Coil Coin Type Vibration Motor (One-Coil Coin Type Motor의 특성 개선)

  • Kwak, Dong-Soo;Kim, Sang-Gil;Shin, Heung-Kyo;Kweon, Chang-Myoung
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.327-329
    • /
    • 2000
  • This paper present the characteristic improvements of one-coil coin type vibration Motor. Rotor is consist of coreless coil and 4 segment commutator. Magnet is 4 pole, z direction magnetized. This one-coil coin type vibration motor has simple mechanical structure and good efficiency. So production cost is lower than other having 2 or more coils coin type motor but it has the weak points. That is small vibration magnitude and dead zone. Modifying the shape of rotor, vibration magnitude is increased. To avoid the dead zone we attached more magnetic body on rotor. As result we show the optimal position of magnetic body.

  • PDF

Optimum design criteria based on the rated watt of a Synchronous Reluctance Motor using a coupled FEM & SUMT (SUMT를 이용한 동기형 릴럭턴스 전동기의 용량에 따른 회전자 최적설계)

  • Kwon, Sun-Bum;Park, Jung-Min;Lee, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1095-1097
    • /
    • 2005
  • This paper deals with an automatic design standard computation based on a rated watt for a synchronous reluctance motor(SynRM). The focus of this paper is making the design relative to the output power on the basis of rotor shape of a SynRM in each rated watt using a coupled FEM & sequential unconstrained minimization technique(SUMT). The coupled finite elements analysis(FEA) & Preisach model have been used to evaluate nonlinear solutions. The proposed procedure allows to define the rotor geometric dimensions according to the rotor diameter and rated watt starting from an existing motor or a preliminary design.

  • PDF

Identification of parameter for Bearing Using Orbit Data (궤도형상 데이터를 이용한 베어링 파라미터 규명)

  • 이경백;정찬범;김영배
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.112-119
    • /
    • 2003
  • This paper presents the identification of rotor dynamic parameters. The solution of the system equation can be obtained using least square method. The sensitivity analysis is performed to extract optimized solution, which is considered to be insensitive to inherent measurement errors. The cosine and sine term of orbit shapes can be obtain ed through the by experiment of the orbit analysis at a different speed after doing orbit analysis at an arbitrary selected speed. This values measured time domain are used to search the stiffness and damping coefficients of rotor bearing.

Effect Investigation of Resonance by Harmonic Components on Structures with Velocity Seismoprobes in a Turbine Rotor System (속도계가 부착된 구조물에서 조화성분의 공진이 미치는 영향 고찰)

  • Yang, Kyeong-Hyeon;Cho, Chul-Whan;Bae, Chun-Hee;Song, Oh-Seop
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.98-102
    • /
    • 2005
  • Most bearing casings are designed to focus on strength and weight of themselves because rotor speed passes through the critical speed when operation begins in large plants such as power plants. And It is treated importantly the relation between rotating frequency of the rotor and the natural frequency of casings to prevent resonance. But there is some cases that it is overlooked for harmonic components above rotating frequency. So we present experimentally a case that harmonic forces may make a resonance on casing fixing probes to measure vibration in a turbine-generator system and the vibration is generated when one component of harmonic forces excites the mode that the natural frequency of a certain bearing casing is close to one of harmonics of basic rotating frequency (1x).

  • PDF

An Optimal Design of the Rotor of BLDC Motors for Noise Reduction (BLDC 모터의 소음 저감을 위한 로터부 구조 최적설계)

  • Kim, Ji-Hoon;Ko, Kang-Ho;Kim, Min-Soo;Heo, Seoung-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.972-975
    • /
    • 2004
  • In order to reduce the noise of BLDC motor, a systematic optimization procedure for rotor structure is presented. The noise index is defined as the sum of volume velocity of FE-model that are calculated at the dominant frequencies during dehydration process, which is based on the principle of radiation simple volume source. Then, the five design variables are selected to represent the shape and layout or rotor structure. This discrete design optimization problem for minimizing the noise index is solved by 3-level orthogonal array based effect analysis. Finally, the response surface method (RSM) combined optimization approach is employed for more refining the approximate optimum.

  • PDF

Optimization of a Savonius hydrokinetic turbine for performance improvement: A comprehensive analysis of immersion depth and rotation direction

  • Mafira Ayu Ramdhani;Il Hyoung Cho
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.141-156
    • /
    • 2024
  • The turbine system converts the kinetic energy of water flow to electricity by rotating the rotor in a restricted waterway between the seabed and free surface. A turbine system's immersion depth and rotation direction are significantly critical in the turbine's performance along with the shape of the rotor. This study has investigated the hydrodynamic performance of the Savonius hydrokinetic turbine (SHT) according to the immersion depth and rotation direction using computational fluid dynamics (CFD) simulations. The instantaneous torque, torque coefficient, and power coefficients are calculated for the immersion ratios Z/D ranging [0.25, 3.0] and both clockwise (CW) and counterclockwise (CCW) rotations. A flow visualization around the rotor is shown to clarify the correlation between the turbine's performance and the flow field. The CFD simulations show that the CCW rotation produces a higher power at shallow immersion, while the CW rotation performs better at deeper immersion. The immersion ratio should be greater than the minimum of Z/D=1.0 to obtain the maximum power production regardless of the rotation direction.