• Title/Summary/Keyword: Rotor bar

Search Result 135, Processing Time 0.034 seconds

Driving Characteristics of the Cross Type Ultrasonic Rotary Motor Dependent on Shape of the Stator (스테이터의 형태에 따른 Cross형 초음파 회전모터의 구동특성)

  • Chong, Hyon-Ho;Park, Tae-Gone
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.10
    • /
    • pp.433-437
    • /
    • 2005
  • This paper studied Rotary type ultrasonic motor which has cross type stator. The stator consists of hollowed cross type metal which has four piezoelectric ceramics on the ends of cross bars. When two harmonic voltages which have 90$^{\circ}$ phase difference given to ceramics, the elliptical motion was generated in the inside tips. Inside tips are contact with rotor and these elliptical motions are rotate the rotor The finite element analysis was used to optimize the dimension and displacement of the stator. And the analyzed results were compared with the experimental results of the motor. As results, the speed and the torque of motor was increased by increasing width of the cross bar. And the speed and torque o( motor was not influenced to length of cross bar. The speed and torque was linearly increased by increasing voltage. The maximum torque was generated when the motor fabricated length of cross bar and width of ceramics in the ratio of 1:2.

A Study on The Broken Rotor Bars in Induction Motor and The Controll Characteristics in Inverter (유도전동기 로터바의 손상과 인버터 제어특성에 관한 연구)

  • Kim K.W.;Kwon J.L.;Lee K.J.;Choi K.S.;Lee H.S.;Chang S.G.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.464-466
    • /
    • 2001
  • The advantage of the squirrel cage induction motor is the brushless rotor. This advantage for operation and maintenance turns out to be a disadvantage for the detection of the cage rotor bar and endring defects, which means that the detection of cage faults is due to the measurement and analysis of only the stator input signals. The monitoring task in an inverter drive is complicated mainly because the voltage and current waveforms are nonsinusoidal and the high dv/dt values from fast switching inverterd distort the measurements. in this paper, we are going to discuss the detection method of broken rotor bar of squirrel cage induction motor by the motor current signal analysis(MCSA).

  • PDF

Detection of Rotating Speed of Induction Motor Using the Rotor Slot Harmonic (회전자 슬롯 고조파를 이용한 유도전동기의 회전속도 검출)

  • Yang, Chul-Oh;Lee, Gyeong-Seok;Lee, Dae-Sung;Parkk, Kyu-Nam;Song, Myung-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2077-2078
    • /
    • 2011
  • Now a days, the induction motor is widely used in industry automation. Without monitoring the motor fault, maintenance cost is increased undesirably high. The slip frequency is included in the feature frequency, so rotating rotor speed is needed. In this paper, a sensorless motor speed estimation method, rotor slot harmonic(RSH) method is suggested and a solution of rotor bar diagnosis is proposed for motor running with light-load. When the rotor is rotating, it shows the harmonic signal of back-emf voltage related with number of rotor slot. So from the power spectrum of current signal, we can find the rotor speed.

  • PDF

Fault Diagnosis of Rotor Bars in a Single Phase Induction Motor Monitoring Electromechanical Parameters (기전연성계 해석을 이용한 단상유도전동기의 회전자 결함진단에 관한 연구)

  • Park, S.J.;Chang, J.H.;Jang, G.H.;Lee, Y.B.;Kim, C.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.802-808
    • /
    • 2000
  • This paper characterizes the electromechanical parameters due to the fault of rotor bars in a squirrel cage induction motor. Simulation is performed to investigate how broken rotor bars have effect on them by solving the time-stepping finite element equation coupled with magnetic field equation, circuit equation and mechanical equation of motion. It shows that the asymmetry of magnetic flux due to the broken rotor bar introduces the beating phenomenon in time domain and the sideband frequencies in frequency spectra, respectively, to the stator current, torque, speed, magnetic force and vibration of a rotor. However, vibration of a rotor would be the most effective monitoring parameters to detect the faults of rotor bars.

  • PDF

A Leak Inspection Automation System for Sealed SUS CAN Rotor (밀폐형 SUS CAN Rotor를 위한 Leak 검사 자동화 시스템)

  • Choi, Chang-min;Seo, Su-min;Shin, Gi-su;Park, Jong-won;Jung, Yeon-seok;Yoo, Nam-hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.406-408
    • /
    • 2019
  • The motor applied to electric water pump used in automobiles is the canned type motor structure. The rotor, which is the driving component of the motor, is located in the bulkhead structure of the plastic injection molding, and rotates while immersed in the antifreeze. Plastic Injection Stator is placed on the outside of the bulkhead structure so that the rotor can rotate. The configuration of the rotor consists of magnet, core and shaft. In the case of magnet and core, it is very important to keep the parts sealed because it is a material that is corroded by moisture. When mounted on a vehicle, it must be capable of driving at $120^{\circ}C$ ambient conditions and should not leak under pressure of 1 bar or more. In this paper, we designed and implemented a Leak inspection automation system using helium to check the defects of the electric water pump developed satisfying this condition.

  • PDF

Study of Rotor Asymmetry Effects of an Induction Machine by Finite Element Method

  • Abdesselam, Lebaroud;Guy, Clerc
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.342-349
    • /
    • 2011
  • This paper presents a study on rotor asymmetry caused by broken bars and its effects on the stator current of an induction machine under an unbalanced supply voltage. The simulation of the induction machine is based on the finite element method. In the early stage of diagnosis, we show new sidebands specific to the partial rupture of the rotor bar. Experimental tests corroborate with the simulation results.

Inflow Prediction and First Principles Modeling of a Coaxial Rotor Unmanned Aerial Vehicle in Forward Flight

  • Harun-Or-Rashid, Mohammad;Song, Jun-Beom;Byun, Young-Seop;Kang, Beom-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.614-623
    • /
    • 2015
  • When the speed of a coaxial rotor helicopter in forward flight increases, the wake skew angle of the rotor increases and consequently the position of the vena contracta of the upper rotor with respect to the lower rotor changes. Considering ambient air and the effect of the upper rotor, this study proposes a nonuniform inflow model for the lower rotor of a coaxial rotor helicopter in forward flight. The total required power of the coaxial rotor system was compared against Dingeldein's experimental data, and the results of the proposed model were well matched. A plant model was also developed from first principles for flight simulation, unknown parameter estimation and control analysis. The coaxial rotor helicopter used for this study was manufactured for surveillance and reconnaissance and does not have any stabilizer bar. Therefore, a feedback controller was included during flight test and parameter estimation to overcome unstable situations. Predicted responses of parameter estimation and validation show good agreement with experimental data. Therefore, the methodology described in this paper can be used to develop numerical plant model, study non-uniform inflow model, conduct performance analysis and parameter estimation of coaxial rotor as well as other rotorcrafts in forward flight.

Effect of Combined Refining Plates with Different Bar Angles on Paper Properties during Mixed Pulp Refining

  • GUO, Xiya;DONG, Jixian;LIU, Huan;DUAN, Chuanwu;YANG, Ruifan;QI, Kai
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.5
    • /
    • pp.581-590
    • /
    • 2020
  • Pulp refining is the major way to alter the properties of fibers and formed paper. Different combinations of the bar profile of the rotor and stator during low consistency refining processes directly affect the properties of the paper. In this study, a mixture of softwood and hardwood pulp was refined by varying the bar angle of the stator while that of the rotor is fixed at 0º. The pulp samples were collected at different refining times. Then, the pulp and paper properties, such as beating degree, fiber external fibrillation, and tensile and tear indexes were measured to explore the effects of the combined refining plates at different bar angles on paper properties. The results of the experiment show that the combined refining plate of 0º and 5º recorded the most significant improvement in the pulp beating degree and fiber external fibrillation. This consequently increased the fiber bonding area, which in turn, improved both the tensile and the tear indexes of the paper. Also, the influence of the combined refining plates with a larger bar angle on the paper properties was weaker compared to that of smaller angles. This study not only provides ideas for the bar profile design but also improves the optimal selection of refining plates.

Dynamic Characteristics of Laminated Rotor Core of Electric Motor Products (생산 전동기 로터 적층 코어의 동특성 조사)

  • Kim, Kwan-Young;Moon, Byung-Yun;Lee, Soo-Mok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.275-278
    • /
    • 2005
  • The dynamic characteristics of rotor shafts for electric motors were investigated through the modal tests. The natural frequencies and modal dampings in each manufacturing stage of rotor core assembly were analyzed from the frequency response functions fer all 6 motors of a product model. The deviation of the each individual modal feature was found dependent on the mode shapes as well as the rotor assembly stage. The core stacking itself is known to widen the deviation of modal properties but fellowing processes of rotor bar insertion and swaging are confirmed to reduce the deviation. Finally the equivalent diameter of core part was estimated from the comparison of measured and calculated results to include the stiffness of core part.

  • PDF

Fractional Order Modeling and Control of Twin Rotor Aero Dynamical System using Nelder Mead Optimization

  • Ijaz, Salman;Hamayun, Mirza Tariq;Yan, Lin;Mumtaz, Muhammad Faisal
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1863-1871
    • /
    • 2016
  • This paper presents an application of fractional order controller for the control of multi input multi output twin rotor aerodynamic system. Dynamics of the considered system are highly nonlinear and there exists a significant cross-coupling between the horizontal and vertical axes (pitch & yaw). In this paper, a fractional order model of twin rotor aerodynamic system is identified using input output data from nonlinear system. Based upon identified fractional order model, a fractional order PID controller is designed to control the angular position of level bar of twin rotor aerodynamic system. The parameters of controller are tuned using Nelder-Mead optimization and compared with particle swarm optimization techniques. Simulation results on the nonlinear model show a significant improvement in the performance of fractional order PID controller as compared to a classical PID controller.