• Title/Summary/Keyword: Rotor Speed

Search Result 1,976, Processing Time 0.033 seconds

Restarting Method for EEMF Based Sensorless Permanent Magnet Synchronous Motor Drive Systems (EEMF 기반 센서리스 영구자석 동기전동기 구동 시스템의 구동 재개 방법)

  • Lee, Young-Jae;Bak, Yeongsu;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.2
    • /
    • pp.127-133
    • /
    • 2019
  • This paper proposes a restarting method for extended electromotive force (EEMF)-based sensorless permanent magnet synchronous motor (PMSM) drive systems. The sensorless PMSM drive systems generally estimate the rotor speed and angle based on EEMF. However, if the inverter is stopped while the PMSM is rotating, the initial rotor speed and angle are required for restart. Therefore, the proposed restarting method estimates the initial rotor speed and angle using the short-circuit current generated by applying zero voltage vector from the inverter. The validity of the proposed method is verified by simulation and experimental results.

Robust Adaptive Control System for Induction Motor Drive Without Speed Sensor at Low Speed (저속영역에서 속도검출기가 없는 유도전동기의 강인성 적응제어 시스템)

  • Kim, Min-Heui
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.91-102
    • /
    • 1999
  • The paper describes a robust adaptive control algorithm for induction motor drive without speed sensor at low speed range. The control algorithm use only current sensors in a space vector pulse width modulation within loop control with rotor speed estimation and voltage source inverter. On-line rotor speed estimation is based on utilizing parallel model reference adaptive control system. MRAC of the modified flux model for flux and rotor speed estimator uses dual-adaptation mechanism, ${\omega}_r$ and ${\omega}_e$ scheme. The estimated flux components in the model can be compensated from the effects of offset errors on pure integrals. It can be compensated to the parameter variations and torque fluctuation with speed estimation in less then 10 rad/sec. In a simulation, the proposed induction motor control algorithm without speed sensor at very low speed range are shown to operate very well in spite of variable rotor time constant and fluctuating load without change the controller parameters. The suggested control strategy and estimation method have been validated by simulation study, and it proposed the designed system for the implementation using TI320C31 DSP/ASIC controller.

  • PDF

Sensorless Control of a Surface Mounted PM Synchronous Motor in Over Modulation Regions by Detecting Phase Voltages (영구자석 표면부착형 동기전동기의 과변조 영역에서 상전압 검출에 의한 센서리스 제어)

  • Choi, Hae-Jun;Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.1
    • /
    • pp.53-59
    • /
    • 2017
  • The information on the actual voltages and actual currents of the motor is required for the sensorless control of a permanent magnet synchronous motor without rotor position sensors. In the model-based rotor position estimator of a PM synchronous motor, the reference voltages, which are the outputs of the current controller, are commonly used. The reference voltages in over-modulation regions for high-speed operation differ from the actual voltages applied to the motor. Consequently, the estimated rotor position and rotor speed may fail to track the real rotor position and real rotor speed. In this paper, the sensorless control for a PM synchronous motor in over-modulation regions for high-speed operation is proposed. The three-phase voltages applied to the motor are measured by using additional voltage detection circuits, and the performance of the rotor position estimator based on the measured three-phase voltages is validated through the experimental results.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Rotor Loss Analysis in Permanent Magnet High-Speed Machine Using Coupled FEM and Analytical Method

  • Jang Seok-Myeong;Cho Han-Wook;Lee Sung-Ho;Yang Hyun-Sup
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.272-276
    • /
    • 2005
  • This paper deals with the method to calculate the rotor eddy current losses of permanent magnet high-speed machines considering the effects of time/space flux harmonics. The flux harmonics caused by the slot geometry in the stator is calculated from the time variation of the magnetic field distribution obtained by the magneto-static finite element analysis and double Fast Fourier Transform. And, using the analytical approach considering the multiple flux harmonics and the Poynting vector, the rotor losses is evaluated in each rotor composite. Using this method is simple and workable for any kind of stator slot shape for rotor loss analysis.

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.

Investigation on Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing (발전기 양극 회전자 밸런싱에서의 이상 진동신호 분석)

  • 박종포;최성필;주영호
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.835-840
    • /
    • 1999
  • Cause of excessive vibration signals with twice the rotational speed of a 2-pole generator rotor in balancing for fossil power plants was investigated. The 2-pole generator rotor is treated as a typically asymmetric rotor in vibration analysis, and produces asynchronous vibration with twice the rotational speed for its own inertia and stiffness asymmetry. This paper introduces practical balancing procedure and experimental vibration data of the asymmetric 2-pole rotor in balancing, and presents the results of investigation into sources of the excessive vibration signals.

  • PDF

Noise and Vibration Characteristics of Externally Pressurized Air proceeding Bearings with a Circular Slot Restrictor (원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성)

  • Park, Jung-Koo;Rho, Byoung-Hoo;Kim, Kyung-Woong
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1277-1282
    • /
    • 2003
  • The purpose of the present paper is to investigate the noise and vibration characteristics of externally pressurized air proceeding bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the width of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the width of the bearing.

  • PDF

Prediction of Noise and Vibration Characteristics of Externally Pressurized Air Journal Bearings with a Circular Slot Restrictor (원형 슬롯 레스트릭터를 갖는 외부 가압 공기 저널 베어링의 소음 및 진동 특성 예측)

  • Rho, Byoung-Hoo;Park, Jung-Koo;Kim, Kyung-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.6
    • /
    • pp.1028-1033
    • /
    • 2003
  • The purpose of this paper is to investigate the noise and vibration characteristics of externally pressurized air journal bearings with a circular slot restrictor. To do this, the nonlinear transient analysis including rotor imbalance was performed for a rotor-bearing system. The effects of radial clearance and the length of the bearing and mass eccentricity of the rotor on the noise and vibration characteristics of the bearing are also examined. The results show that the noise and vibration of the rotor-bearing system first increase up to critical speed of the system, and then decrease up to instability threshold speed of the system as the rotational speed of the rotor increases, and the noise of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the length of the bearing.

Comparison and Analysis for Rotor losses of Permanent Magnet Synchronous Generator using Phase Current Harmonic Analysis according to DC and AC Loads (상전류 고조파 분석을 이용한 직교류 부하에 따른 영구자석 동기 발전기의 회전자 손실 특성해석 및 비교)

  • Jang, Seok-Myeong;Kim, Hyun-Kyu;Choi, Jang-Young;Ko, Kyoung-Jin;Lee, Sung-Ho;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.721-722
    • /
    • 2008
  • This paper deals with comparison and analysis for rotor losses of permanent magnet synchronous generator using phase current harmonic analysis according to dc and ac load. On the basis of analytical field analysis, the rotor losses are analysed. Particularly, rated speed and ac load and the rated speed and dc load conditions are considered. This paper compared rotor losses considered dc load with rotor losses considered ac load. Although our analytical modes is low speed, the rotor losses must be considered by results.

  • PDF