• Title/Summary/Keyword: Rotor Speed

Search Result 1,975, Processing Time 0.029 seconds

Three-Dimensional Rotordynamic Analysis Considering Bearing Support Effects (베어링 지지 효과를 고려한 3 차원 로터동역학 해석)

  • Park, Hyo-Keun;Kim, Dong-Hyun;Kim, Myung-Kuk;Chen, Seung-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.902-909
    • /
    • 2006
  • In this study, three-dimensional rotordynamic analyses have been conducted using equivalent beam, hybrid and fun three-dimensional models. The Present computational method is based on the general finite element method with rotating gyroscopic effects of a rotor system. General purpose commercial finite element code, SAMCEF which includes practical rotordynamics module with various types of rotor analysis methods and bearing elements is applied. For the purpose of numerical verification, comparison study for a benchmark rotor model with support bearings is performed first. Detailed finite element models based on three different modeling concepts are constructed and then computational analyses are conducted for the realistic and complex three-dimensional rotor system. The results for rotor stability and mass unbalance response are presented and compared with the experimental vibration test conducted in this study.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 김종수;강성주
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.8
    • /
    • pp.1743-1750
    • /
    • 2003
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as a speed detector, but they increase cost and size of the motor and restrict the industrial drive applications. So in these days, many papers have reported in the sensorless operation of DC motor〔3­5〕. This paper presents a new sensorless strategy using neural networks〔6­8〕. Neural network has three layers which are input layer, hidden layer and output layer. The optimal neural network structure was tracked down by trial and error, and it was found that 4­16­1 neural network structure has given suitable results for the instantaneous rotor speed. Also, learning method is very important in neural network. Supervised learning methods〔8〕 are typically used to train the neural network for learning the input/output pattern presented. The back­propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Implementation of Quad-rotor Hovering Systems with Tracking (추적이 가능한 쿼드로터 호버링 시스템 구현)

  • Jung, Won-Ho;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.6
    • /
    • pp.574-579
    • /
    • 2016
  • Unlike general unmanned aerial vehicles, the quad-rotor is attracting the attention of many people because of simple structure and very useful value. However, as the interest in drones increases, the safety and location of vehicles are becoming more important provide against aviation safety accidents or lost accidents. Therefore, in this paper, we propose a tracking system that stabilizes the model with a simple controller by linearized modeling and grasp tilt angle data from various sensor through the filter. The developed tracking system transmits the position of the quad-rotor in flight to the computer and shows it through the route, so it can check the flight path and various information such as flight speed and altitude at the same time. Then the sensor used in the actual quad-rotor can not measure exact sensor data for disturbance and vibration. So we use sensor fusion of Kalman filter and Complementary filter to overcome this problem and the stability of the quad-rotor hovering is realized by PID control. Through simulation, various information such as the speed, position, and altitude of the quad-rotor were confirmed in real time.

A New Method to Estimate the Magnetic Field Modulation Effect of Brushless Doubly-Fed Machine with Cage Rotor

  • Liu, Hanghang;Han, Li;Gao, Qiang
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.3
    • /
    • pp.330-335
    • /
    • 2012
  • Brushless doubly-fed machine (BDFM) doesn't use brush and slip ring, and has advantages such as high system reliability, small capacity of its frequency converter, low system cost, adjustable power factor and speed, etc. At the same time, it has good applicable potentials on the variable frequency motors and the variable speed constant frequency generators. However, due to the complicacy and particularity of BDFM in the structure and operating mechanism, the effect of magnetic field modulation directly influences the operating efficiency of BDFM. To study the effect of different cage rotor structures on the magnetic field modulation of BDFM, the rotor magnetomotive force (MMF) of BDFM with cage rotor is studied by the analytical method. The components and features of rotor harmonic MMFs are discussed. At the same time, the method to weaken the higher harmonics is analyzed by the theoretic formulae. Furthermore, the magnetic field modulation mechanism is expounded on in detail and the relationship between the magnetic field modulation effect and the operating efficiency of BDFM is established. And then, a new method for estimating the magnetic field modulation effect is proposed. At last, the magnetic field modulation effects of four BDFM prototypes with different cage rotor structures are compared by the MMF analysis and the efficiency data of electromagnetic design. The results verify the effectiveness of the new method for estimating the magnetic field modulation effect of BDFM with cage rotor.

Modeling of a Grid-Connected Wind Energy Conversion System for Dynamic Performance Analysis (동특성해석을 위한 계통연계 풍력발전 시스템의 모델링)

  • Choo, Yeoun-Sik;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1358-1360
    • /
    • 2002
  • This paper presents a modeling and simulation of a utility-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for the wind turbine and presents the relationship of wind turbine output, rotor speed, power coefficient, tip-speed ratio and wind speed when the wind turbine is operated under the maximum power control algorithm. The control objective is to extract maximum power from wind and transfer the power to the utility. This is achieved by controlling the pitch angle of the wind turbine blades. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor speed, pitch angle, and generator output.

  • PDF

A Novel Flux Calculator for the Field Oriented Control of an Induction Motor without Speed Sensors (속도센서 없는 유도전동기 자속기준제어를 위한 새로운 자속 연산기)

  • 김경서
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.125-130
    • /
    • 1998
  • This paper describes a novel flux calculator for the estimation of real rotor flux angle which is indispensable to the field oriented control of induction motors. A pure integrator is used to estimate the real rotor flux precisely from voltage and current information. The proposed flux calculator adopts the new drift compensation method to overcome the drift problem of pure integrator. The motor speed is calculated using estimated flux angle and estimated slip frequency. The performance of this approach is verified through the experiment. The experimental results shows stable operation of proposed system even below 1/100 of rated speed.

Power Control of the DFIG Using the Rotor Exciting Control (회전자 여자제어를 이용한 풍력발전 DFIG의 출력제어)

  • 이우석;오철수
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.13 no.3
    • /
    • pp.93-100
    • /
    • 1999
  • Wide operating range and speed control is needed for wind power generating and a Doubly Fed Induction Generator(DFlG) has good adaptivity for that purpose. Ths paper investigates speed and output stator power control using a grid connected to a DFlG in super-synchronous speed regions, by control of both magnitude and frequency of the voltage fed to the rotor. For the speed control analysis, torque simulation is perforrred whereby the different slip between qJernting rmtor driving frequency and synchronous frequency of M-G system awlied. To keep the output rating of the generator, the exciting frequency and voltage attenuation are arolied.rolied.

  • PDF

A Robust Sensorless Vector Control System for Induction Motors

  • Huh Sung-Hoe;Choy Ick;Park Gwi-Tae
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.443-447
    • /
    • 2001
  • In this paper, a robust sensorless vector control system for induction motors with a speed estimator and an uncertainty observer is presented. At first, the proposed speed estimator is based on the MRAS(Mode Reference Adaptive System) scheme and constructed with a simple fuzzy logic(FL) approach. The structure of the proposed FL estimator is very simple. The input of the FL is the rotor flux error difference between reference and adjustable model, and the output is the estimated incremental rotor speed Secondly, the unmodeled uncertainties such as parametric uncertainties and external load disturbances are modeled by a radial basis function network(RBFN). In the overal speed control system, the control inputs are composed with a norminal control input and a compensated control input, which are from RBFN observer output and the modeling error of the RBFN, repectively. The compensated control input is derived from Lyapunov unction approach. The simulation results are presented to show the validity of the proposed system.

  • PDF

Characteristics Evaluation of Inductive Position Sensor for the State monitoring of a High Speed Spindle (고속 주축 상태 모니터링용 유도형 변위 센서의 특성 평가)

  • 신우철;홍준희;이동주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.65-68
    • /
    • 2002
  • In a high speed spindle system, it is very important to monitor the state of rotating rotor. Particularly in active control spindle system, the position sensor must provide feedback to the control system on the exact position of the rotor. In order to monitor the state of a high speed spindle exactly, High accuracy and wide frequency bandwidth of sensors are important. This paper describes the factors which has an effect on performances of inductive position sensor. We also report the experimental results that characterize the performances of the inductive position sensor.

  • PDF

Design and Dynamic Analysis of Rotor for 300HP Class Super High-Speed Motor (300HP급 초고속 전동기용 회전체의 동력학적 해석 및 설계)

  • Lee, Yong-Bok;Lee, Hee-Sub;Kim, Seung-Jong;Kim, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.16-18
    • /
    • 2007
  • The Super High-Speed Motor is a turbo machine which operates at high speed, so air foil bearings suit their purpose as bearing elements. The rotordynamic stability was predicted using the numerical analysis of air foil bearings. From this study, the stability of rotor of the Super High-Speed Motor was confirmed by campbell diagram and logarithmic decrement.

  • PDF