• Title/Summary/Keyword: Rotor Aerodynamics

Search Result 66, Processing Time 0.022 seconds

An Unstructured Mesh Technique for Rotor Aerodynamics

  • Kwon, Oh-Joon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.24-25
    • /
    • 2006
  • An unstructured mesh method has been developed for the simulation of steady and time-accurate flows around helicopter rotors. A dynamic and quasi-unsteady solution-adaptive mesh refinement technique was adopted for the enhancement of the solution accuracy in the local region of interest involving highly vortical flows. Applications were made to the 2-D blade-vortex interaction aerodynamics and the 3-D rotor blades in hover. The interaction between the rotor and the airframe in forward flight was investigated by introducing an overset mesh technique.

  • PDF

Potential Panel and Vortex Particle Coupling Analysis for Rotor Aerodynamics (포텐셜 패널과 와류 조각 연계방법을 이용한 로터 공력 해석)

  • Jang, Ji Sung;Chung, In Jae;Lee, Duck Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.481-485
    • /
    • 2013
  • Rotor wake causes unsteady aerodynamics of rotor blade. So, accurate prediction of wake is very important and vortex method is good solution for this problem. Aerodynamic force of the rotor blade is calculated by potential panel method and the rotor wake is simulated by vortex particle method. The vortex particle method is easier to treat wake-body interaction and has better performance to expect the effect of ground and fuselage interaction. Rotor in hovering and forward flight condition is simulated through these methods. Thrust and surface pressure of rotor are compared with experiment data.

Articulated Rotor/Aerodynamics Co-Simulation Using FMI Standard (FMI 표준을 활용한 관절형 로터/공력 연계시뮬레이션)

  • Paek, Seung-Kil;Park, Joongyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • The purpose of this research is to develop co-simulation methodology of codes developed in different modeling and simulation environment. We develop aerodynamic FMU(Functional Mock-up Unit) meeting FMI(Functional Mock-up Interface) specification version2 utilizing Legacy FORTRAN aerodynamic code based on unsteady vortex lattice method. It is concluded that making FMU is possible utilizing Legacy code made in any language which can be compiled and linked with object in FMI API coded in C language. This paper explains QTronic's method of using FMU SDK(Software Development Kit) and suggestion for using FORTRAN properly. Finally, we make articulated rotor/aerodynamics co-simulation by integrating aerodynamics FMU and rotor FMU developed by Modelica.

Development of a numerical method for rotor aerodynamics applications (로터 공력해석을 위한 수치기법 개발)

  • Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.693-698
    • /
    • 2007
  • A numerical method for accurate simulations of rotor aerodynamics is proposed. The numerical diffusion in the typically coarse grids away from the rotor blades is improved by implying a fourth-order of interpolation of local characteristic variables of the flow in the reconstruction stage of MUSCL approach in the framework of a finite volume formulation. In addition, different slope limiters are applied to the different characteristic fields, such as compressive limiters to linear characteristic fields to reduce the numerical dissipation whereas, diffusive limiters to nonlinear characteristic fields to increase numerical stability. Various exemplary problems related to the rotor aerodynamics applications are tested and the numerical results show a significant improvement in wake capturing capability. However, rotor aeroacoustic calculations show no meaningful difference over traditional MUSCL approach.

An Analysis of BVI Unsteady Rotor Aerodynamics using Unsteady Panel and Time-Marching Free Wake (비정상 패널 및 시간전진 자유후류를 이용한 BVI 비정상 로터 공력 해석)

  • Wie, Seong-Yong;Lee, Duck-Joo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.329-335
    • /
    • 2009
  • The unsteady panel and time-marching free wake are applied to the rotor aerodynamics and wake behaviour. Numerical results of panel and free wake are compared and validated with experimental data. Using these methods, unsteady rotor aerodynamics in BVI condition is analyzed and discussed in detail.

Aerodynamics Characteristics of Quad-Rotor Blade (쿼드로터 블레이드의 공력특성)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.43-46
    • /
    • 2008
  • Quad-Rotor, which consists of four blades, performs a flight task by controling each rotation speed of the four blades. Quad-Rotor blade making no use of cyclic pitch or collective one is a type of fixed-wing as different from helicopter blade. Although, Quad-Rotor is simple and easy to control for those reasons, blade configuration of the fixed wing is one of the critical factors in determining the performance of Quad-Rotor. In the present study, coefficients for thrust and power of Quad-Rotor blade were derived from the data acquired by using 6-component balances. Firstly, Measurements for aerodynamic force were conducted at various pitch angles (i.e., from 0$^{\circ}$ to 90$^{\circ}$ with the interval of 10$^{\circ}$). The blade used in this experiment has aspect ratio of 6 and chord length of 35.5 mm. Secondly, assembled-blade, which was an integral blade but divided into many pieces, was used in order to test aerodynamic forces along twist angles. The curve of thrust coefficient along pitch angle indicates a parabola form. Stall which occurs during wind tunnel test to calculate lift coefficient of airfoil does not generate. When deciding the blade twist angle, structural stability of blade should be considered together with coefficients of thrust and power. Those aerodynamic force data based on experimental study will be provided as a firm basis for the design of brand-new Quad-Rotor blade.

  • PDF

Aerodynamic Analysis of Tilt-Rotor Unmanned Aerial Vehicle with Computational Fluid Dynamics

  • Kim Cheol-Wan;Chung Jin-Deog
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.561-568
    • /
    • 2006
  • CFD simulation for one of tilt-rotor UAV configurations, TR-E2S1, was performed to investigate its aerodynamic characteristics. Control surfaces such as elevator and rudder were deflected and wing incidence angle was changed. Also aerodynamic stabilities were analyzed with the variation of pitch and yaw angles. The comparison of CFD with wind tunnel test results reveals the same trends in the aerodynamic characteristics and stabilities. However 12% scale wind tunnel test model is too small for accurate data collection and should build a high fidelity model for quantitative data comparison.

A Dynamics Model of Rotor Blades for Real-time Simulation of Helicopters (실시간 헬리콥터 시뮬레이션을 위한 회전 깃의 역학적 모델)

  • Park, Su-Wan;Ryu, Kwan-Woo;Kim, Eun-Ju;Baek, Nak-Hoon
    • The KIPS Transactions:PartA
    • /
    • v.14A no.5
    • /
    • pp.255-262
    • /
    • 2007
  • Physically-based researches on simulating helicopter motions have been achieved in the field of aeronautics, aerodynamics and others. These results, however, have not been appled in the computer graphics area, mainly due to their complex equations and heavy computations. In this paper, we propose a dynamics model of helicopter rotor blades, which would be easy to implement, and suitable for real-time simulations of helicopters in the computer graphics area. Helicopters fly by the forces due to the collisions between air and rotor blades. These forces can be interpreted as the impulsive forces between the fluid and the rigid body. Based on these impulsive forces, we propose an approximated dynamics model of rotor blades, and it enables us to simulate the helicopter motions using existing rigid body simulation methods. We compute forces due to the movement of rotor blades according to the Newton's method, to achieve its real-time computations. Our prototype implementation shows real-time aerial navigation of helicopters, which are murk similar to the realistic motions.

Review of Reaction Drive Rotor System Sizing Methodology (반작용 구동로터 시스템의 사이징 방법론에 대한 고찰)

  • Ali, Freshipali Rasheeth;Jeon, Kwon-Su;Lee, Jae-Woo
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.9-13
    • /
    • 2016
  • Reaction drive rotor system is capable of providing hover and low speed capabilities to different aircraft concepts such as stopped rotor wing, canard rotor wing, compound gyroplane etc. Existing sizing and analysis tools for shaft drive rotor system cannot be applied directly to this system. The available methodologies to size this system were reviewed. Power available calculation procedure and factors affects it were addressed prior to sizing process. Various design issues of this system due to interrelationship of internal gas flow dynamics and rotor external aerodynamics was discussed. Finally, a modification that is required in existing sizing methodologies was identified and combined approach in sizing process to consider the interrelationship among engine, rotor and blade duct was introduced.

  • PDF

An active back-flow flap for a helicopter rotor blade

  • Opitz, Steffen;Kaufmann, Kurt;Gardner, Anthony
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.1
    • /
    • pp.69-91
    • /
    • 2014
  • Numerical investigations are presented, which show that a back-flow flap can improve the dynamic stall characteristics of oscillating airfoils. The flap was able to weaken the stall vortex and therefore to reduce the peak in the pitching moment. This paper gives a brief insight into the method of function of a back-flow flap. Initial wind tunnel experiments were performed to define the structural requirements for a detailed experimental wind tunnel characterization. A structural integration concept and two different actuation mechanisms of a back-flow flap for a helicopter rotor blade are presented. First a piezoelectric actuation system was investigated, but the analytical model to estimate the performance showed that the displacement generated is too low to enable reliable operation. The seond actuation mechanism is based on magnetic forces to generate an impulse that initiates the opening of the flap. A concept based on two permanent magnets is further detailed and characterized, and this mechanism is shown to generate sufficient impulse for reliable operation in the wind tunnel.