• Title/Summary/Keyword: Rotational stage

Search Result 139, Processing Time 0.028 seconds

Fabrication of Three-Dimensional Micro Optical and Fluidic System Using Dual Stage Nanostereolithography Process (이중 스테이지를 이용한 대면적 3차원 광/유체 마이크로 디바이스 제작에 관한 연구)

  • Lim, Tae Woo;Yang, Dong-Yol
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.10
    • /
    • pp.552-557
    • /
    • 2015
  • The nanostereolithography process using a femtosecond laser has been shown to have strong merits for the direct fabrication of 2D/3D micro structures. In addition, a femtosecond laser provides efficient tools for precise micromachining owing to the advantages of a small and feeble heat effect zone. In this paper, we report an effective fabrication process of 3D micro optical and fluidic devices using nanostereolithography process composed of a dual stage system. Process conditions for additive and subtractive fabrication are examined. The Piezo stage scanning system is used for 3D micro-fabrication in unit area of sub-mm scale, and the motor stage is employed in fabrication on the scale of several mm. The misalignment between the pizeo- and motor- stages is revised through rotational transformation of CAD data in the unit domain. Here, the effectiveness of the proposed process is demonstrated through examples using 3D optical and microfluidic structures.

Study on Growth Responses of Soybean in Paddy Field for Establishing Environment-Friendly Cropping System (친환경 논 밭 윤환 콩 재배법 확립을 위한 논 콩 재배시 품종별 생육반응 연구)

  • Kim, Yong-Wook;Cho, Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.4
    • /
    • pp.437-450
    • /
    • 2004
  • This study was conducted with two objectives ; one was to select the suitable soybean cultivars for cultivation in paddy field and the other was to establish the environment-friendly rotational cropping system of soybean instead of rice in paddy field. In order to evaluate growth adaptation and yields, Eve soybean cultivars were cultivated in Yeoncheon, Keonggi province, with two cultivation methods such as level row and high ridge. Growth of the top plants, such as stem length, number of branches, diameter of stem, were higher in high ridge than in level row, however, the differences among the cultivars were bigger than those between the cultivation methods. Dry weight of top plant was significantly different among the cultivars during whole growth stages, however, it was higher in level row than in high ridge at V5 stage while it became higher in high ridge as growth progressed. Roots were more developed in high ridge than in level row during whole growth stages. T/R ratio in level row was higher than that in high ridge. During whole growth stages, significant differences were observed among the cultivars in growth and yields in each cultivation method and yields of Eunhakong was the highest. In results, number of nodules and T/R ratio at V5 stage, number of pods at R2 stage, and number of seeds and T/R ratio at R5 stage had highly correlated with yields, respectively.

  • PDF

The Seek Control Design with Gain-Scheduling in Hard Disk Drives

  • Hwang, Eun-Ju;Hyun, Chang-Ho;Park, Mig-Non
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • The increased disk rotational velocity to improve the data transfer rate has raised up many serious problems in its servo control system which should control the position and velocity of a spot relative to a rotating disk. This paper proposes gain-scheduling-based track-seek control for single stage actuator of hard disk drives. Gain scheduling is a technique that can extend the validity of the linearization approach to a range of operating points and one of the most popular approaches to nonlinear control design. The proposed method schedules controller gains to improve the transient response and minimize overshoot during the functions of the read/write head positioning servomechanism for the seek control. The validity of the proposed method is demonstrated through stability analysis and simulation results.

Surface Mounting Device의 동역학적 모델링 및 상태 민감도 해석

  • 장진희;한창수;김정덕
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.628-634
    • /
    • 1995
  • In the area of assembly process of micro-chips and electronic parts on the printed circuit board, surface mounting device(SMD) is used as a fundamental tool. Generally speaking, the motion of the SMD is based on the ball screw system operated by any type of actuators. The ball screw system is a mechanical transformer which converts the mechanical rotational motion to the translational one. Also, this system could be considered as an efficient motion device against mechanical backash and friction. Therefore a dynamic modeling and stste sensitivity analysis of the ball screw system in SMD have to be done in the initial design stage. In this paper, a simple mathematical dynamic model for this system and the sensitivity snalysis are mentioned. Especially, the bond graph approach is used for graphical modeling of the dynamic system before analysis stage. And the direct differentiation method is used for the state sensitivity analysis of the system. Finally, some trends for the state variables with respect to the design variables could be suggested for the better design based on the results on the results of dynamic and state sensitivity.

  • PDF

A New Blade Profile for Bidirectional Flow Properly Applicable to a Two-stage Jet Fan

  • Nishi, Michihiro;Liu, Shuhong;Yoshida, Kouichi;Okamoto, Minoru;Nakayama, Hiroyasu
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.449-455
    • /
    • 2009
  • A reversible axial flow fan called jet fan has been widely used for longitudinal ventilation in road tunnels to secure a safe and comfortable environment cost-effectively. As shifting the flow direction is usually made by only switching the rotational direction of an electric motor due to heavy duty, rotor blades having identical aerodynamic performance for bidirectional flow should be necessary. However, such aerodynamically desirable blades haven't been developed sufficiently, since most of the related studies have been done from the viewpoint of unidirectional flow. In the present paper, we demonstrate a method to profile the blade section suitable for bidirectional flow, which is validated by studying the aerodynamic performances of rotor blades of a two-stage jet fan experimentally and numerically.

Linear BLDC motor design for a ultra-precision stage (초정밀 Stage용 선형 BLDC 전동기 설계)

  • Kang, Do-Hyun;Hong, Jung-Pyo;Chang, Ki-Chan;Jeon, Jung-Woo;Chun, Young-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2000.11b
    • /
    • pp.274-276
    • /
    • 2000
  • Recently, the demands of the ultra-precision stage system, such as wafer stepper stages for photolithography, are increasing in the field of manufacturing and test equipment. Since the mechanical elements which convert rotational motion into translational introduce backlash and elasticity in the system, better performance of the drive could be achieved by the linear BLDC motor with appropriate servo control. The analytical design and the FEM analysis about linear BLDC motor is described in this paper. The performance of the servo-drive system will be evaluated through the comparison of results between the designed data and the measured data in the future.

  • PDF

Performance Characteristics of a Partially Admitted Small Mixed-Type Turbine (부분분사에서 작동하는 소형 사류형 터빈에서의 성능특성에 관한 연구)

  • Cho, Chong-Hyun;Kim, Chae-Sil;Paeng, Jin-Gi;Cho, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.889-898
    • /
    • 2009
  • A mixed-type turbine was adopted and the rotor outer diameter was 108 mm. Turbine rotors were designed to the axial-type blade because the turbine operated at a low partial admission rate of 1.7-2.0% with two stages. Performance characteristics were studied when the spouting from the nozzle was toward radially inward or outward direction. Additionally, the effect at each stage of the rotor was measured. For comparing with each turbine performance, properties were measured based on various rotational speeds. Measured net specific torque was used to compare with the turbine system performance. On the mixed-type turbine, better performance was obtained when the operating air spouted toward radially inward direction. The specific torque was increased by 7.8% from using the second stage although its effect depended on the rotational speed.

High-resolution optical and near-infrared spectroscopic study of 2MASS J06593158-0405277

  • Park, Sunkyung;Lee, Jeong-Eun;Pyo, Tae-Soo;Sung, Hyun-Il;Lee, Sang-Gak;Kang, Wonseok;Oh, Hyung-Il;Yoon, Tae Seog;Mace, Gregory N.;Jaffe, Daniel T.;Yoon, Sung-Yong;Green, Joel D.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • We present the results of high-resolution (R ≥ 30,000) optical and near-infrared spectroscopic monitoring observations of a FU Orionis-type object, 2MASS J06593158-0405277. We have monitored 2MASS J06593158-0405277 with the Bohyunsan Optical Echelle Spectrograph (BOES) and the Immersion GRating INfrared Spectrograph (IGRINS) since December 2014. Various features produced by wind, disk, and outflow/jet were detected. The wind features varied over time and disappeared about a year after the outburst occurred. The double-peaked line profiles were detected in the optical and near-infrared, and the line widths decrease with increasing wavelength. The disk features in the optical spectra are fit well with G2-type or G5-type stellar spectra convolved with a disk rotational profile of about 45 km s-1, which corresponds to a disk radius of about 71 Rfor a central mass of 0.75 M. Disk features in near-infrared spectra are fit well with a K1-type stellar spectrum convolved with a disk rotational profile of about 35 km s-1, which corresponds to a disk radius of about 117 R for a central mass of 0.75 M. We also detected [S II] and H2 emission lines, which are rarely found in FUors but are usually found in the earlier stage of young stellar objects. Therefore, we suggest that 2MASS J06593158-0405277 is in the relatively earlier part of Class II stage.

  • PDF

Two-stage crack identification in an Euler-Bernoulli rotating beam using modal parameters and Genetic Algorithm

  • Belen Munoz-Abella;Lourdes Rubio;Patricia Rubio
    • Smart Structures and Systems
    • /
    • v.33 no.2
    • /
    • pp.165-175
    • /
    • 2024
  • Rotating beams play a crucial role in representing complex mechanical components that are prevalent in vital sectors like energy and transportation industries. These components are susceptible to the initiation and propagation of cracks, posing a substantial risk to their structural integrity. This study presents a two-stage methodology for detecting the location and estimating the size of an open-edge transverse crack in a rotating Euler-Bernoulli beam with a uniform cross-section. Understanding the dynamic behavior of beams is vital for the effective design and evaluation of their operational performance. In this regard, modal parameters such as natural frequencies and eigenmodes are frequently employed to detect and identify damages in mechanical components. In this instance, the Frobenius method has been employed to determine the first two natural frequencies and corresponding eigenmodes associated with flapwise bending vibration. These calculations have been performed by solving the governing differential equation that describes the motion of the beam. Various parameters have been considered, such as rotational speed, beam slenderness, hub radius, and crack size and location. The effect of the crack has been replaced by a rotational spring whose stiffness represents the increase in local flexibility as a result of the damage presence. In the initial phase of the proposed methodology, a damage index utilizing the slope of the beam's eigenmode has been employed to estimate the location of the crack. After detecting the presence of damage, the size of the crack is determined using a Genetic Algorithm optimization technique. The ultimate goal of the proposed methodology is to enable the development of more suitable and reliable maintenance plans.

Experimental Research on Multi Stage Transonic Axial Compressor Performance Evaluation (다단 천음속 축류형 압축기 성능에 관한 실험적 연구)

  • Kang, Young-Seok;Park, Tae-Choon;Hwang, Oh-Sik;Yang, Soo-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.96-101
    • /
    • 2011
  • Korea Aerospace Research Institute is performing 3 stage transonic axial compressor development program. This paper introduces design step of the compressor, the performance test results and its analysis. In the fore part of the paper, aerodynamic process of the 3 stage axial compressor is presented. To satisfy both of the mass flow and pressure rise, the compressor should rotate at a high rotational speed. Therefore the transonic flow field forms in the rotor stages and it is designed with a relatively high pressure rise per stage to satisfy its design target. The compressor stage consists of 3 stages, and the bulk pressure ratio is 2.5. The first stage is burdened with the highest pressure ratio and less pressure rises occur in the following stages. Also it is designed that tip Mach number of the first rotor row does not exceed 1.3, while the maximum relative Mach number in the rotor stage is between 1.3~1.4 to increase the compressor flow coefficient. The final design has been confirmed by iterating three dimensional CFD calculations to verify design target and some design intentions. In the latter part of the paper, its performance test processes and results are presented. The performance test result shows that the overall compressor performance targets; pressure ratio and efficiency are well achieved. The stator static pressure distributions show that the blade loading is gradually increasing from the downstream of the compressor.