• Title/Summary/Keyword: Rotational rate

Search Result 425, Processing Time 0.024 seconds

Effects of Local Anesthetics on the Rate of Rotational Mobility of Phospholipid Liposomes

  • Chung, In-Kyo;Kim, Dae-Gyeong;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.279-284
    • /
    • 2000
  • Using fluorescence probes, 2-(9-anthroyloxy) stearic acid (2- AS) and 12-(9-anthroyloxy) stearic acid (12-AS), we determined the differential effects of local anesthetics (tetracaine-HCI, bupivacaine-HCI, lidocaine-HCI, prilocaine-HCI and procaine-HCI) on the differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total phospholipid fraction liposome that is extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were$0.051{\pm}0.001$ and $0.096{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. Local anesthetics in a dosedependent manner decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer, but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior, but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Differential Effects of Local Anesthetics on Rate of Rotational Mobility between Hydrocarbon Interior and Surface Region of Model Membrane Outer Monolayer

  • Chung, In-Kyo;Cha, Seong-Kweon;Chung, Yong-Za;Kim, Bong-Sun;Choi, Chang-Hwa;Cho, Goon-Jae;Jang, Hye-Ock;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 2000
  • Using fluorescence polarization of 12-(9-anthroyloxy)stearic acid (12-AS) and 2-(9-anthroyloxy)stearic acid (2-AS), we evaluated the differential effects of local anesthetics on differential rotational rate between the surface (in carbon number 2 and its surroundings including the head group) and the hydrocarbon interior (in carbon number 12 and its surroundings) of the outer monolayer of the total lipid fraction liposome extracted from synaptosomal plasma membrane vesicles. The anisotropy (r) values for the hydrocarbon interior and the surface region of the liposome outer monolayer were $0.078{\pm}0.001$ and $0.114{\pm}0.001,$ respectively. This means that the rate of rotational mobility in the hydrocarbon interior is faster than that of the surface region. In a dose-dependent manner, the local anesthetics decreased the anisotropy of 12-AS in the hydrocarbon interior of the liposome outer monolayer but increased the anisotropy of 2-AS in the surface region of the monolayer. These results indicate that local anesthetics have significant disordering effects on the hydrocarbon interior but have significant ordering effects on the surface region of the liposome outer monolayer.

  • PDF

Numerical Analysis on Changes in Flowrate of Draft Water and Power by Changing Design Parameters of a Long-Distance Water Circulation (저층수 흡입식 광역 순환장치의 설계변수에 따른 배출량 및 소비동력 변화 특성에 대한 수치 해석 연구)

  • Song, Dong-Keun;Hong, Won-Seok;Kim, Young-Cheol;Park, Myong-Ha
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.23-28
    • /
    • 2010
  • A draft tube which has impeller to elevate bottom water and spread it over surface of lake water, induces convective circulation of lake water, a Long-Distance Circulation (LDC). Circulation of lake water make stratified water mixed and enhance DO (Dissolved Oxygen) of bottom water. Circulation rate of water is determined by draft rate of the tube, which is dependent on design parameters of the draft tube system, i. e. dimension of impeller and diffuser, inclined angle of impeller, impeller shape, and rotational speed. In this study, change in draft rate and power consumption of circulation equipment was investigated numerically with changing impeller dimension, angle and rotational speed. It was found that flowrate of draft water was increased as the dimensions of draft tube and impeller, and rotational speed and inclined angle of impeller increased. The power consumption was also elevated with increasing parameter values, and final selection of parameter values was made to satisfy target flowrates and power consumption.

A Study on Cutting Conditions and Finishing Machining of Si Material Using Laser Assisted Module (레이저 보조 모듈을 이용한 Si 소재의 절삭조건 및 보정가공에 관한 연구)

  • Young-Durk Park
    • Design & Manufacturing
    • /
    • v.17 no.2
    • /
    • pp.15-21
    • /
    • 2023
  • In this study, a diamond turning machine and a laser-assisted machining module were utilized for the complex combined cutting of aspheric shapes and fine patterns on the surface of high-hardness brittle material, silicon. The analysis of material's form accuracy and corrective machining was conducted based on key factors such as laser output, rotational speed, feed rate, and cutting depth to achieve form accuracy below 1 ㎛ and surface roughness below 0.1 ㎛. The cutting condition and corrective machining methods were investigated to achieve the desired form accuracy and surface roughness. The rotational speed of the spindle and the linear feed rate of the diamond turning machine were varied in five stages for the cutting condition test. Surface roughness and form accuracy were measured using both a contact surface profilometer and a non-contact surface profilometer. The experimental results revealed a tendency of improved surface roughness with increased rotational speed of the workpiece, and the best surface roughness and form accuracy were observed at a feed rate of 5 mm/min. Furthermore, based on the cutting condition experiments, corrective machining was performed. The experimental results demonstrated an improvement in form accuracy from 0.94 ㎛ to 0.31 ㎛ and a significant reduction in the average value of the surface roughness curve from 0.234 ㎛ to 0.061 ㎛. This research serves as a foundation for future studies focusing on the machinability in relation to laser output parameters.

Surface Wheel Pattern Analysis and Grinding Process Parameters of Silicon (반도체 실리콘재료의 정밀연삭을 위한 공정변수와 연삭후 표면에 형성된 wheel pattern과의 관계)

  • Oh, Han-Seog;Park, Sung-Eun;Lee, Hong-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.187-194
    • /
    • 2002
  • For the fine grinding process development of semiconductor monocrystalline silicon, wheel rotational speed, chuck rotational speed, feed rate and hysteresis force were controlled. Magic mirror system was used for grinding wheel pattern analysis. Curvature of wheel pattern was measured by fitting equation. The modeling of surface wheel pattern was related to wheel and chuck rotational speed. The calculated curvature of the model was well matched with the measured curvature. The statistical analysis indicated wheel and chuck rotational speed were significantly effective on.

Numerical Simulation of External Gear Pump Using Immersed Solid Method (Immersed Solid Method 를 이용한 외접형 기어 펌프의 수치해석)

  • Yoon, Yong Han;Park, Byung Ho;Han, Yong Oun;Hong, Byeong Joo;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.95-101
    • /
    • 2014
  • In this study, an ISM (immersed solid method) was used for investigating the mass flow rate and efficiency of an involute-gear pump featuring very high rotational speed. For considering circulation flow at the gear pump and housing, fluid flow was assumed as turbulent, and the rotational speed of the gear pump increased under the condition of constant pressure at both the inlet and outlet. The efficiency and mass flow rate of the gear pump were studied by varying its rotational speed and the clearance between the gear tip and the housing. In the simulation results, as the rotational speed were increased, the average mass flow rate and efficiency increased. Furthermore, as the clearance between the gear tip and the housing was increased, the average mass flow rate and efficiency decreased. The efficiency was 85.11, 90.94, and 93.62 at rotational speeds of 6,000 rpm, 8,000 rpm, and 10,000 rpm, respectively, under the condition that there was no clearance. In addition, the efficiency was 93.62, 93.29, and 92.74 at clearances of 0 m, 0.00001 m, and 0.00003 m respectively.

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.

Usefulness of 3D Rotational Angiography for Cerebral Vascular Diameter Measurement (뇌혈관 직경측정을 위한 3차원 회전 혈관조영술의 유용성)

  • Seung-Gi, Kim;Sang-Hyun, Kim
    • Journal of radiological science and technology
    • /
    • v.46 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • When measuring cerebrovascular with 3D rotational angiography, the accuracy was verified by comparing the actual size and measurement size, respectively. It is intended to help select therapeutic materials and instruments during cerebrovascular intervention by comparing the average error rates for measured values in the 3DRA and CTA methods by examining with protocols such as brain CTA, which are always performed in emergency situations. The mean error rate between the groups of measurers was ±3.655% for radiation technologist and ±3.331% for university students, and the mean error rate of the student group was within tolerance (±10%), and the independent sample T-test result t =0.879, p=0.394 (p>0.05) showed no statistically difference between the two. In addition, the average error rate measured by both groups by 3DRA was measured below ±5% within the tolerance error rate (±10%), and most of CTA was measured within the tolerance range (±10%), but showed an average error rate of up to 5.65%, and the independent sample T-test result was statistically more accurate than 3DRA. Both the 3DRA method and the brain CTA method for measuring cerebrovascular size could be accurately measured within tolerance, but it would be better to measure cerebrovascular blood vessels using a more accurate 3DRA method during cerebrovascular intervention.

Effects of Chlorhexidine Digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic Acid in Porphyromonas ginginvalis Outer Membranes

  • Jang, Hye-Ock;Cha, Seong-Kweon;Lee, Chang;Choi, Min-Gak;Huh, Sung-Ryul;Shin, Sang-Hun;Chung, In-Kyo;Yun, Il
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.125-130
    • /
    • 2003
  • The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16-(9-anthroyloxy)stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.

Grindability of Ti-10%Zr-X%Cr(X=0,1,3) Alloys for Dental Applications (치과용 Ti-10%Zr-X%Cr(X=0,1,3)합금의 연삭성)

  • Jung, Jong-Hyun;Shin, Jae-Woo
    • Journal of Technologic Dentistry
    • /
    • v.35 no.4
    • /
    • pp.295-302
    • /
    • 2013
  • Purpose: The grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys in order to develop Ti alloys for dental applications with better machinability than unalloyed titanium has been evaluated. Methods: Experimental Ti-10%Zr-X%Cr(X=0,1,3) alloys were made in an argon-arc melting furnace. Slabs of experimental alloys were ground using a SiC abrasive wheel on an electric handpiece at one of the four rotational speeds of the wheel (12000, 18000, 25000 or 30000rpm) by applying a force(100gf). Grindability was evaluated by measuring the amount of metal volume removed per minute(grinding rate) and the volume ratio of metal removed compared to the wheel material lost, which was calculated from the diameter loss (grinding ratio). Experimental datas were compared the results with those of cp-Ti(commercially pure titanium) Results: It was observed that the grindability of Ti-10%Zr-X%Cr(X=0,1,3) alloys increased with an increase in the Cr concentration. More, they are higher than cp-Ti, particularly the Ti-10%Zr-3%Cr alloy exhibited the highest grindability at all rotational speeds except 12000rpm. There was significant difference in the grinding rate and grinding ratio between Ti-10%Zr-3%Cr alloy and cp-Ti at all rotational speeds(p<0.05). Conclusion: The Ti-10%Zr-3%Cr alloy exhibited better grindability at high rotational speeds, great potential for use as a dental machining alloy.