References
- Abrams FS, Chattopadhyay A, London E. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry 31: 5322-5327, 1992 https://doi.org/10.1021/bi00138a011
- Abrams FS, London E. Extension of parallax analysis of membrane penetration depth to the polar region of model membranes: Use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32: 10826-10831, 1993 https://doi.org/10.1021/bi00091a038
- Audus KL, Tavakoli-Saberi MR, Zheng H, Boyce EN. Chlorhexidine effects on membrane lipid domains of human buccal epithelial cells. J Dent Res 71: 1298-1303, 1992 https://doi.org/10.1177/00220345920710060601
- Buck RA, Eleazer PD, Staat RH, Scheetz JP. Effectiveness of three endodontic irrigants at various tubular depths in human dentin. J Endod 27: 206-208, 2001 https://doi.org/10.1097/00004770-200103000-00017
- Ferretti GS, Ash RC, Brown AT, Largent BM, Kaplan A, Lillich TT. Chlorhexidine for prophylaxis against oral infections and associated complications in patients receiving bone marrow transplants. J Am Dent Assoc 114: 461-467, 1987a https://doi.org/10.14219/jada.archive.1987.0112
- Ferretti GS, Hansen IA, Whittenburg K, Brown AT, Lillich TT, Ash RC. Therapeutic use of chlorhexidine in bone marrow transplant patients: case studies. Oral Med Oral Surg Oral Pathol 63: 683- 687, 1987b https://doi.org/10.1016/0030-4220(87)90371-9
- Fisher RG, Quintana RP, Boulware MA. Surface-chemical studies on chlorhexidine and related compounds. I. Effects at air-water, n-hexane-water, and hydroxyapatite-water interfaces. J Dent Res 54: 20-24, 1975 https://doi.org/10.1177/00220345750540012901
- Fisher RG, Quintana RP. Surface-chemical studies on chlorhexidine and related compounds. II. Interaction with monomolecular-film systems. J Dent Res 54: 25-31, 1975 https://doi.org/10.1177/00220345750540013001
- Gabler WL, Roberts D, Harold W. The effect of chlorhexidine on blood cells. J Periodontal Res 22: 150-155, 1987 https://doi.org/10.1111/j.1600-0765.1987.tb01555.x
- Gerlach RW, White DJ. Removal of extrinsic using a tartar control whitening dentifrice: a randomizied clinical trial. J Clin Dent 12: 42-46, 2001
- Hugo WB. Membrane-active antimicrobial compounds-a reappraisal of their mode of action in the light of the chemiosmotic theory. Int J Pharm 1: 127-131, 1978 https://doi.org/10.1016/0378-5173(78)90014-5
- Kenney EB, Saxe SR, Bosles RD. Effect of chlorhexidine on human polymorphonuclear leukocytes. Arch Oral Biol 17: 1633-1636, 1972 https://doi.org/10.1016/0003-9969(72)90051-9
- Knuutilla M, SÖdering E. Effect of chlorhexidine on the release of lysosomal enzymes from cultured macrophages. Acta Odontologica Scandinavica 39: 285-289, 1981 https://doi.org/10.3109/00016358109162291
- Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinbero A. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63: 3878-3885, 1995
- Lowry OH, Rosebrough NR, Farr AL, Randall RJ. Protein measurement with the olin phenol reagent. J Biol Chem 193: 265-275, 1951
- LÖe H, Schiott Rindom C. The effect of mouthrinses and topical applications of chlorhexidine on the development of dental plaque and gingivitis in man. J Periodontal Res 5: 79-83, 1970 https://doi.org/10.1111/j.1600-0765.1970.tb00696.x
- Mason JT. Properties of phosphatidylcholine bilayers as revealed by mixed-acyl phospholipid fluorescent probes containing n- (9-anthroyloxy) fatty acids. Biochim Biophys Acta 1194: 99-108, 1994 https://doi.org/10.1016/0005-2736(94)90207-0
- Molitoris BA, Alfery AC, Arris RA, Simon FR. Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am J Physiol 249: 12-19, 1985
- Molitoris BA, Hoilien C. Static and dynamic components of renal cortical brush border and basolateral membrane fluidity: Role of cholesterol. J Membrane Biol 99: 165-172, 1987 https://doi.org/10.1007/BF01995697
- Newbrun E. Anticaries and antiplaque/anti-gingivitis agents. In Neidle EA, Yagiela JA ed, Pharmacology and Therapeutics for Dentistry. The C.V. Mosby Co., Philadelphia, pp 603-624, 1989
- Russell AD. Chlorhexidine: Antibacterial action and bacterial resistance. Infection 14: 212-215, 1986 https://doi.org/10.1007/BF01644264
- Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology 4: 140-151, 1984 https://doi.org/10.1002/hep.1840040124
- Smalley JW, Birss AJ, Mckee AS, Marsh PD. Haemin-binding proteins of Porphyromonas gingivalis W50 grown in a chemostat under haemin-limitation. J Gen Microbiol 139: 2145-2150, 1993 https://doi.org/10.1099/00221287-139-9-2145
- Smalley JW, Birss AJ. Trypsin-like enzyme activity of the extracellular vesicles of Bacteroides gingivalis W50. J Gen Microbiol 133: 2883-2894, 1987
- Spratt DA, Pratten J, Wilson M, Gulablvala K. An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int Endod J 34: 300-307, 2001 https://doi.org/10.1046/j.1365-2591.2001.00392.x
- Stubbs CD, Rubin E. Molecular mechanism of ethanol and anesthetic actions: lipid- and protein-based theories. In Alling C, Diamond I, Leslie SW, Sun GY, Wood WG ed. Alcohol, Cell Membranes, and Signal Transduction in Brain, Pleum Press, New York, pp 1-11, 1993
- Thulborn KR, Tilley LM, Sawyer WH, Treloar FE. The use of n-(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers. Biochim Biophys Acta 558: 166-178, 1979 https://doi.org/10.1016/0005-2736(79)90057-9
- Tilley L, Thulborn KR, Sawyer WH. As assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9- anthroyloxy) fatty acids (n=2,6,9,12,16). J Biol Chem 254: 2592- 2594, 1979
- Tsuchiya H. Effects of green tea catechins on membrane fluidity. Pharmacol 59: 34-44, 1999 https://doi.org/10.1159/000028303
- Tsutsui H, Kinouchi T, Wakano Y, Ohnishi Y. Purification and characterization of a protease from Bacteroides gingivalis 381. Infect Immun 55: 420-427, 1987
- Villalaín J, Prieto M. Location and interaction of N-(9-anthroyloxy)- stearic acid probes incorporated in phosphatidylcholine vesicles. Chem Phys Lipids 59: 9-16, 1991 https://doi.org/10.1016/0009-3084(91)90058-J
- Vincent M, De Furesta D, Gallay J, Alfsen A. Fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoyl phosphatidylcholine vesicles: Localization of the effects of cholesterol addition. Biochim Biophys Res Commun 107: 914- 921, 1982 https://doi.org/10.1016/0006-291X(82)90610-6