Effects of Chlorhexidine Digluconate on Rotational Rate of n-(9-Anthroyloxy)stearic Acid in Porphyromonas ginginvalis Outer Membranes

  • Jang, Hye-Ock (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Cha, Seong-Kweon (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Lee, Chang (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Choi, Min-Gak (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Huh, Sung-Ryul (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Shin, Sang-Hun (Department of Oral and Maxillofacial Surgery and Clinical Pharmacology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Chung, In-Kyo (Department of Oral and Maxillofacial Surgery and Clinical Pharmacology, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University) ;
  • Yun, Il (Department of Dental Pharmacology and Biophysics, College of Dentistry and Research Institute for Oral Biotechnology, Pusan National University)
  • Published : 2003.06.21

Abstract

The aim of this study was to provide a basis for studying the molecular mechanism of pharmacological action of chlorhexidine digluconate. Fluorescence polarization of n-(9-anthroyloxy)stearic acid was used to examine the effect of chlorhexidine digluconate on differential rotational mobility of different positions of the number of membrane bilayer phospholipid carbon atoms. The six membrane components differed with respect to 2, 3, 6, 9, 12, and 16-(9-anthroyloxy)stearic acid (2-AS, 3-AS, 6-AS, 9-AS, 12-AS and 16-AP) probes, indicating different membrane fluidity. Chlorhexidine digluconate increased the rate of rotational mobility of hydrocarbon interior of the cultured Porphyromonas gingivalis outer membranes (OPG) in a dose-dependent manner, but decreased the mobility of surface region (membrane interface) of the OPG. Disordering or ordering effects of chlorhexidine digluconate on membrane lipids may be responsible for some, but not all of its bacteriostatic and bactericidal actions.

Keywords

References

  1. Abrams FS, Chattopadhyay A, London E. Determination of the location of fluorescent probes attached to fatty acids using parallax analysis of fluorescence quenching: effect of carboxyl ionization state and environment on depth. Biochemistry 31: 5322-5327, 1992 https://doi.org/10.1021/bi00138a011
  2. Abrams FS, London E. Extension of parallax analysis of membrane penetration depth to the polar region of model membranes: Use of fluorescence quenching by a spin-label attached to the phospholipid polar headgroup. Biochemistry 32: 10826-10831, 1993 https://doi.org/10.1021/bi00091a038
  3. Audus KL, Tavakoli-Saberi MR, Zheng H, Boyce EN. Chlorhexidine effects on membrane lipid domains of human buccal epithelial cells. J Dent Res 71: 1298-1303, 1992 https://doi.org/10.1177/00220345920710060601
  4. Buck RA, Eleazer PD, Staat RH, Scheetz JP. Effectiveness of three endodontic irrigants at various tubular depths in human dentin. J Endod 27: 206-208, 2001 https://doi.org/10.1097/00004770-200103000-00017
  5. Ferretti GS, Ash RC, Brown AT, Largent BM, Kaplan A, Lillich TT. Chlorhexidine for prophylaxis against oral infections and associated complications in patients receiving bone marrow transplants. J Am Dent Assoc 114: 461-467, 1987a https://doi.org/10.14219/jada.archive.1987.0112
  6. Ferretti GS, Hansen IA, Whittenburg K, Brown AT, Lillich TT, Ash RC. Therapeutic use of chlorhexidine in bone marrow transplant patients: case studies. Oral Med Oral Surg Oral Pathol 63: 683- 687, 1987b https://doi.org/10.1016/0030-4220(87)90371-9
  7. Fisher RG, Quintana RP, Boulware MA. Surface-chemical studies on chlorhexidine and related compounds. I. Effects at air-water, n-hexane-water, and hydroxyapatite-water interfaces. J Dent Res 54: 20-24, 1975 https://doi.org/10.1177/00220345750540012901
  8. Fisher RG, Quintana RP. Surface-chemical studies on chlorhexidine and related compounds. II. Interaction with monomolecular-film systems. J Dent Res 54: 25-31, 1975 https://doi.org/10.1177/00220345750540013001
  9. Gabler WL, Roberts D, Harold W. The effect of chlorhexidine on blood cells. J Periodontal Res 22: 150-155, 1987 https://doi.org/10.1111/j.1600-0765.1987.tb01555.x
  10. Gerlach RW, White DJ. Removal of extrinsic using a tartar control whitening dentifrice: a randomizied clinical trial. J Clin Dent 12: 42-46, 2001
  11. Hugo WB. Membrane-active antimicrobial compounds-a reappraisal of their mode of action in the light of the chemiosmotic theory. Int J Pharm 1: 127-131, 1978 https://doi.org/10.1016/0378-5173(78)90014-5
  12. Kenney EB, Saxe SR, Bosles RD. Effect of chlorhexidine on human polymorphonuclear leukocytes. Arch Oral Biol 17: 1633-1636, 1972 https://doi.org/10.1016/0003-9969(72)90051-9
  13. Knuutilla M, SÖdering E. Effect of chlorhexidine on the release of lysosomal enzymes from cultured macrophages. Acta Odontologica Scandinavica 39: 285-289, 1981 https://doi.org/10.3109/00016358109162291
  14. Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinbero A. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63: 3878-3885, 1995
  15. Lowry OH, Rosebrough NR, Farr AL, Randall RJ. Protein measurement with the olin phenol reagent. J Biol Chem 193: 265-275, 1951
  16. LÖe H, Schiott Rindom C. The effect of mouthrinses and topical applications of chlorhexidine on the development of dental plaque and gingivitis in man. J Periodontal Res 5: 79-83, 1970 https://doi.org/10.1111/j.1600-0765.1970.tb00696.x
  17. Mason JT. Properties of phosphatidylcholine bilayers as revealed by mixed-acyl phospholipid fluorescent probes containing n- (9-anthroyloxy) fatty acids. Biochim Biophys Acta 1194: 99-108, 1994 https://doi.org/10.1016/0005-2736(94)90207-0
  18. Molitoris BA, Alfery AC, Arris RA, Simon FR. Renal apical membrane cholesterol and fluidity in regulation of phosphate transport. Am J Physiol 249: 12-19, 1985
  19. Molitoris BA, Hoilien C. Static and dynamic components of renal cortical brush border and basolateral membrane fluidity: Role of cholesterol. J Membrane Biol 99: 165-172, 1987 https://doi.org/10.1007/BF01995697
  20. Newbrun E. Anticaries and antiplaque/anti-gingivitis agents. In Neidle EA, Yagiela JA ed, Pharmacology and Therapeutics for Dentistry. The C.V. Mosby Co., Philadelphia, pp 603-624, 1989
  21. Russell AD. Chlorhexidine: Antibacterial action and bacterial resistance. Infection 14: 212-215, 1986 https://doi.org/10.1007/BF01644264
  22. Schachter D. Fluidity and function of hepatocyte plasma membranes. Hepatology 4: 140-151, 1984 https://doi.org/10.1002/hep.1840040124
  23. Smalley JW, Birss AJ, Mckee AS, Marsh PD. Haemin-binding proteins of Porphyromonas gingivalis W50 grown in a chemostat under haemin-limitation. J Gen Microbiol 139: 2145-2150, 1993 https://doi.org/10.1099/00221287-139-9-2145
  24. Smalley JW, Birss AJ. Trypsin-like enzyme activity of the extracellular vesicles of Bacteroides gingivalis W50. J Gen Microbiol 133: 2883-2894, 1987
  25. Spratt DA, Pratten J, Wilson M, Gulablvala K. An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int Endod J 34: 300-307, 2001 https://doi.org/10.1046/j.1365-2591.2001.00392.x
  26. Stubbs CD, Rubin E. Molecular mechanism of ethanol and anesthetic actions: lipid- and protein-based theories. In Alling C, Diamond I, Leslie SW, Sun GY, Wood WG ed. Alcohol, Cell Membranes, and Signal Transduction in Brain, Pleum Press, New York, pp 1-11, 1993
  27. Thulborn KR, Tilley LM, Sawyer WH, Treloar FE. The use of n-(9-anthroyloxy) fatty acids to determine fluidity and polarity gradients in phospholipid bilayers. Biochim Biophys Acta 558: 166-178, 1979 https://doi.org/10.1016/0005-2736(79)90057-9
  28. Tilley L, Thulborn KR, Sawyer WH. As assessment of the fluidity gradient of the lipid bilayer as determined by a set of n-(9- anthroyloxy) fatty acids (n=2,6,9,12,16). J Biol Chem 254: 2592- 2594, 1979
  29. Tsuchiya H. Effects of green tea catechins on membrane fluidity. Pharmacol 59: 34-44, 1999 https://doi.org/10.1159/000028303
  30. Tsutsui H, Kinouchi T, Wakano Y, Ohnishi Y. Purification and characterization of a protease from Bacteroides gingivalis 381. Infect Immun 55: 420-427, 1987
  31. Villalaín J, Prieto M. Location and interaction of N-(9-anthroyloxy)- stearic acid probes incorporated in phosphatidylcholine vesicles. Chem Phys Lipids 59: 9-16, 1991 https://doi.org/10.1016/0009-3084(91)90058-J
  32. Vincent M, De Furesta D, Gallay J, Alfsen A. Fluorescence anisotropy decays of n-(9-anthroyloxy) fatty acids in dipalmitoyl phosphatidylcholine vesicles: Localization of the effects of cholesterol addition. Biochim Biophys Res Commun 107: 914- 921, 1982 https://doi.org/10.1016/0006-291X(82)90610-6