• 제목/요약/키워드: Rotational freedom

검색결과 181건 처리시간 0.024초

Stabilization and trajectory control of the flexible manipulator with time-varying arm length

  • Park, Chang-Yong;Ono, Toshiro;Sung, Yulwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.20-23
    • /
    • 1996
  • This paper deals with the flexible manipulator with rotational and translational degrees of freedom, which has an arm of time-varying length with the prismatic joint. The tracking control problem of the flexible manipulator is considered. First we design the controller of the 2-type robust servo system based on the finite horizon optimal control theory for the trajectory planned as a discontinuous velocity. Next, to reduce the tracking error, we use the method of the dynamic programming and of modifying the reference trajectory in time coordinate. The simulation results show that the dynamic modeling is adequate and that the asymptotic stabilization of the flexible manipulator is preserved in spite of nonlinear terms. The PTP control error has been reduced to zero completely, and the trajectory tracking errors are reduced sufficiently by the proposed control method.

  • PDF

이족보행 안전성을 위한 골반기구의 제어시스템 설계 (Control System Design of Pelvis Platform for Biped Walking Stability)

  • 김수현;양태규
    • 제어로봇시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.306-314
    • /
    • 2009
  • The pelvis platform is the mechanical part which accomplishes the activities of diminishing the disturbances from the lower body and maintaining a balanced posture. When a biped robot walks, a lot of disturbances and irregular vibrations are generated and transmitted to the upper body. As there are some important machines and instruments in the upper body or head such as CPU, controller units, vision system, etc., the upper part should be isolated from disturbances or vibrations to functions properly and finally to improve the biped stability. This platform has 3 rotational degrees of freedom and is able to maintain balanced level by feedback control system. Some sensors are fused for more accurate estimation and the control system which integrates synchronization and active filtering is simulated on the virtual environment.

저에너지 충돌 탄뎀 질량분석법을 이용한 올리고당의 연결구조 연구:아세틸화 반응이 미치는 영향 (Structural Study of Oligosaccharides by Low Energy Collision Tandem Mass Spectrometry : Effect of the Acetylation Derivatization)

  • 유은순
    • 대한화학회지
    • /
    • 제42권3호
    • /
    • pp.297-301
    • /
    • 1998
  • 올리고당의 구조중 연결위치(linkage position)는 충돌 탄뎀 질량분석법(FAB CAD MS/MS: Fast Atom Bombardment Collision Activated Dissociation Mass Spectrometry/Mass Spectrometry)을 이용하여 알 수 있다. 연결위치-이성질체 올리고당을 아세틸화시키면 자유올리고당보다 연결위치의 구별이 쉽고 독특한 분절이온 패턴을 얻을 수 있다. 그 이유는 연결위치에 따라 각 올리고당이 충돌에너지(collision energy)를 흡수하여 glycosidic 결합 주위를 회전하는 회전운동의 자유도가 달라지기 때문이다.

  • PDF

CAD를 이용한 선박 블록의 이동 및 반전 시뮬레이터 DS/Block의 개발 (DS/Block - a CAD-based software system for simulation of lifting and turnover of ship block)

  • 이수범;신상범;김정수;곽병만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.164-169
    • /
    • 2001
  • A comprehensive extension of functions and efficiency of the software system, DS/Block, developed earlier for the purpose of simulation of the motion of a ship block during lifting and turnover operation. A viewpoint change used in 3D-CAD is utilized and saves the time for displays of a series of configurations for the motion. The Euler parameters are adopted to convert 3 rotational degrees of freedom about global coordinate system to those about local coordinate system defined in Pro/ENGINEER. DS/Block provides FEM input data for stress and strain analyses. Several functions are incorporated for user-friendliness. DS/Block is to be tested and installed in a shipyard.

  • PDF

MR 유체의 동특성 (Identification of Dynamic property of MR Fluid)

  • 안영공;하종용;안경관;양보석;백석준언;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.576-579
    • /
    • 2005
  • MR (Magneto Rheological) fluids are well known as a smart fluid and their application researches to control vibration have been conducted by many researchers. However, their dynamic properties have not been identified clearly yet. Therefore, the MR effect is investigated by using a rotational viscometer and a single degree of freedom system with an MR damper. The results obtained from the experimental study show that stiffness and viscous damping coefficients of the system with an MR damper are changed according to the variation of the applied current.

  • PDF

회전관성 효과를 고려한 탄성 다물체 동력학에 관한 연구 (Study of of Flexible Multibody Dynamics with Rotary Inertia)

  • 김성수
    • 소음진동
    • /
    • 제6권3호
    • /
    • pp.287-296
    • /
    • 1996
  • A virtual work form of flexible multibody dynamic formulation with rotary inertia has been derived. For the analysis of large flexible multibody systems, deformation modal coordinates have been employed to represent coupled motion between gross and vibrational motion. For the efficient evaluation of the entries in the mass matrix, a flexible body has been treated as a collection of mass points. The rotary inertia was generated from the consistent mass matrix in a finite element model. Deformation mode shapes were obtained from finite element analysis. Bending and twisting vibration analyses of a cantilever have been carried out to see rotary inertia effects. A space flexible robot simulation has been also carried out to show effectiveness of the proposed formulation. This formulation is effective to the model that consists of beam, plate, or shell element that contains rotational degree of freedom at the nodal point. It is also effective to the flexible body model to which a large lumped rotary inertia is attached.

  • PDF

Optimal Control for Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권3호
    • /
    • pp.206-220
    • /
    • 2010
  • This paper proposes optimal control techniques for determining translational and rotational maneuvers that facilitate proximity operations and docking. Two candidate controllers that provide translational motion are compared. A state-dependent Riccati equation controller is formulated from nonlinear relative motion dynamics, and a linear quadratic tracking controller is formulated from linearized relative motion. A linear quadratic Gaussian controller using star trackers to provide quaternion measurements is designed for precision attitude maneuvering. The attitude maneuvers are evaluated for different final axis alignment geometries that depend on the approach distance. A six degrees-of-freedom simulation demonstrates that the controllers successfully perform proximity operations that meet the conditions for docking.

출력 파형 왜율과 효율 개선을 위한 CRPWM의 전압 제어 방법 (A New Voltage Control Method in CRPWM for Improving Distortion and Efficiency at Load Side)

  • 안성찬;송종환;조규복;원종수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 B
    • /
    • pp.1104-1107
    • /
    • 1992
  • Voltage controlled current regulated PWM(pulse width modulation) of VSI (voltage source inverter) is proposed. Adopting one degree of freedom, the voltage, the current controller shows much more improvement than conventional ones not using this method. The voltage controller or this proposal needs load's parameters, torque value, rotational speed. This voltage controller is located at converter part which links AC source and DC bus. With this proposed method, duty ratio of the inverter's switching is nearly unity for all speed and torque range. Hence, this method gets many advantages such as reducing current ripple, thermal loss, and noises and improving control performances. Theoretical approach to this voltage-current controller is performed, and the results are presented.

  • PDF

4-RRPaRR구조의 Schönflies Motion Generator 기구학 특성 분석 (Kinematic Characteristics of a 4-RRPaRR Type Schönflies Motion Generator)

  • 김성목;이병주;김희국
    • 로봇학회논문지
    • /
    • 제6권1호
    • /
    • pp.78-85
    • /
    • 2011
  • This article investigates kinematic characteristics of a Sch$\ddot{o}$nflies motion generator which represents a mechanism having translational three Degree-of-Freedom (DOF) and rotational one-DOF motion about a fixed axis. The mechanism consists of the base plate and the moving plate, and four identical limbs connecting them. Each limb employs two revolute joints (RR), one parallelogram (Pa), and two revolute joints (RR) from the base plate to the moving plate. The mechanism is driven by four actuators which are placed on the base plate to minimize dynamic loads. It is shown through simulations that the mechanism can be designed to secure large dexterous workspace and thus has very high potential for actual applications such as haptic devices and high-speed requiring tasks such as pick-and-place operations, riveting, screwing tasks, etc.

A QP Artificial Neural Network Inverse Kinematic Solution for Accurate Robot Path Control

  • Yildirim Sahin;Eski Ikbal
    • Journal of Mechanical Science and Technology
    • /
    • 제20권7호
    • /
    • pp.917-928
    • /
    • 2006
  • In recent decades, Artificial Neural Networks (ANNs) have become the focus of considerable attention in many disciplines, including robot control, where they can be used to solve nonlinear control problems. One of these ANNs applications is that of the inverse kinematic problem, which is important in robot path planning. In this paper, a neural network is employed to analyse of inverse kinematics of PUMA 560 type robot. The neural network is designed to find exact kinematics of the robot. The neural network is a feedforward neural network (FNN). The FNN is trained with different types of learning algorithm for designing exact inverse model of the robot. The Unimation PUMA 560 is a robot with six degrees of freedom and rotational joints. Inverse neural network model of the robot is trained with different learning algorithms for finding exact model of the robot. From the simulation results, the proposed neural network has superior performance for modelling complex robot's kinematics.