• Title/Summary/Keyword: Rotation of stress

Search Result 465, Processing Time 0.026 seconds

Rayleigh waves in anisotropic magnetothermoelastic medium

  • Kumar, Rajneesh;Sharma, Nidhi;Lata, Parveen;Abo-Dahab, S.M.
    • Coupled systems mechanics
    • /
    • v.6 no.3
    • /
    • pp.317-333
    • /
    • 2017
  • The present paper is concerned with the investigation of Rayleigh waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature, in the presence of Hall current and rotation. The formulation is applied to the thermoelasticity theories developed by Green-Naghdi theories of Type-II and Type-III. Secular equations are derived mathematically at the stress free and thermally insulated boundaries. The values of Determinant of secular equations, phase velocity and Attenuation coefficient with respect to wave number are computed numerically. Cobalt material has been chosen for transversely isotropic medium and magnesium material is chosen for isotropic solid. The effects of rotation, magnetic field and phase velocity on the resulting quantities and on particular case of isotropic solid are depicted graphically. Some special cases are also deduced from the present investigation.

Effect of inclined load on transversely isotropic magneto thermoelastic rotating solid with time harmonic source

  • Lata, Parveen;Kaur, Iqbal
    • Advances in materials Research
    • /
    • v.8 no.2
    • /
    • pp.83-102
    • /
    • 2019
  • The present research deals with the time harmonic deformation in transversely isotropic magneto thermoelastic solid with two temperature (2T), rotation and without energy dissipation due to inclined load. Lord-Shulman theory has been formulated for this mathematical model. The entire thermo-elastic medium is rotating with a uniform angular velocity. The Fourier transform techniques have been used to find the solution to the problem. The displacement components, stress components and conductive temperature distribution with the horizontal distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. The effect of time harmonic source and rotation is depicted graphically on the resulting quantities.

Optimization of Slot Location for Stress Distribution in Rotating Disc of Diamond Tools (다이아몬드 공구의 회전원판내 응력 분산을 위한 슬롯 위치의 최적화)

  • Park Sungil;Lee Sangjin;Byun Seopong;Hwang Seoungtack
    • Korean Journal of Materials Research
    • /
    • v.15 no.9
    • /
    • pp.560-565
    • /
    • 2005
  • The objective of this paper is to decide optimal of the slot angle to minimize stress concentration in rotating disc of diamond saw. The fracture phenomena of the slot are discussed by the theoretical and experimental approaches and then some recommendation are presented to prevent the fracture. The focus of this investigation is to evaluation the effect of the slot on stress distribution using optimum design technique and finite element method(FEM) analysis. Stress concentration of the slot with respect to the various parameter of the slot such position, size, number, rotation speed. From the experimental results, when the slot angle of diamond saw is located $8^{\circ}\~12^{\circ}$ from rotating direction, the maximum equivalent stress reduces.

A THREE-DIMENSIONAL FEM COMPARISON STUDY ABOUT THE FORCE, DISPLACEMENT AND INITIAL STRESS DISTRIBUTION ON THE MAXILLARY FIRST MOLARS BY THE APPLICATION OF VAR10US ASYMMETRIC HEAD-GEAR (비대칭 헤드기어의 적용시 상악제 1 대구치에 나타나는힘과 변위 및 초기 응력분포에 관한 3차원 유한요소법적 연구)

  • Kim, Jong-Soo;Cha, Dyung-Suk;Ju, Jin-Won;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.31 no.1 s.84
    • /
    • pp.25-38
    • /
    • 2001
  • The purpose of this study was to compare the force, the displacement and the stress distribution on the maxillary first molars altered by the application of various asymmetric head-gear. For this study, the finite element models of unilateral Cl II maxillary dental arch was made. Also, the finite element models of asymmetric face-bow was made. Three types of asymmetric face-bow were made : each of the right side 15mm, 25mm and 35mm shorter than the left side. We compared the forces, the displacement and the distribution of stress that were generated by application of various asymmetric head-gear, The results were as follows. 1. The total forces that both maxillary first molars received were similar in all groups. But the forces that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow shortened. 2. In lateral force comparison, the buccal forces that normally positioned tooth received were increased as the length of the outer-bow shortened, and the buccal fortes that mesially positioned tooth received were decreased as the length of the outer-bow shortened. Though the net lateral force moved to the buccal side of normally positioned tooth as the length of the outer-bow shortened, both maxillary first molars received the buccal force. That showed 'Avchiai Expansion Effect' 3. The distal forces, the extrusion forces and the magnitudes of the crown distal tipping that mesially positioned tooth received were increased as the length of the outer-bow shortened, and the forces that normally positioned tooth received were decreased as the length of the outer-bow was shortened. 4. The magnitude of the distal-in rotation that normally positioned tooth received were increased as the length of the outer-bow was shortened. But, mesially positioned tooth show two different results. For the outer-bow 15mm shortened, mesially positioned tooth showed the distal-in rotation, hut for the outer-bow 25mm and 35mn shortened, mesially positioned tooth showed the distal-out rotation. Thus, the turning point exists between 15mm and 25mm. 5. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the compressive stress in the distobuccal root of the normally positioned tooth moved from the palatal side to the distal side and the buccal side successively as the length of the outer-bow shortened. 6. This study of the initial stress distribution of the periodontal ligament at slightly inferior of the furcation area revealed that the magnitudes of stress were altered but the total stress distributions were not altered in the mesiobuccal root and the palatal root of normally positioned tooth, and also three roots of mesially positioned tooth as the length of the outer-bow shortened.

  • PDF

Biomechanical Analysis of the Implanted Constrained and Unconstrained ICR Types of Artificial Disc using FE Model (순간중심 고정식 및 이동식 인공디스크 적용에 대한 유한요소 모델을 이용한 생체역학적 분석)

  • Yun Sang-Seok;Jung Sang-Ki;Kim Young-Eun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.176-182
    • /
    • 2006
  • Although several artificial disc designs have been developed for the treatment of discogenic low back pain, biomechanical changes with its implantation were rarely studied. To evaluate the effect of artificial disc implantation on the biomechanics of functional spinal unit, a nonlinear three-dimensional finite element model of L4-L5 was developed with 1-mm CT scan data. Biomechanical analysis was performed for two different types of artificial disc having constrained and unconstrained instant center of rotation(ICR), ProDisc and SB Charite III model. The implanted model predictions were compared with that of intact model. Angular motion of vertebral body, forces on the spinal ligaments and facet joint, and stress distribution of vertebral endplate for flexion-extension, lateral bending, and axial rotation with a compressive preload of 400N were compared. The implanted model showed increased flexion-extension range of motion compared to that of intact model. Under 6Nm moment, the range of motion were 140%, 170% and 200% of intact in SB Charite III model and 133%, 137%, and 138% in ProDisc model. The increased stress distribution on vertebral endplate for implanted cases could be able to explain the heterotopic ossification around vertebral body in clinical observation. As a result of this study, it is obvious that implanted segment with artificial disc suffers from increased motion and stress that can result in accelerated degenerated change of surrounding structure. Unconstrained ICR model showed increased in motion but less stress in the implanted segment than constrained model.

An Analysis of Stress Pattern in the Coracoclavicular Ligaments with Scapular Movements: A Cadaveric Study Using Finite Element Model

  • Kim, Yoon Sang;Kim, In-Sung;Yoo, Yon-Sik;Jang, Seong-Wook;Yang, Cheol-Jung
    • Clinics in Shoulder and Elbow
    • /
    • v.18 no.3
    • /
    • pp.152-158
    • /
    • 2015
  • Background: Acromioclavicular (AC) stability is maintained through a complex combination of soft-tissue restraints that include coracoclavicular (CC), AC ligament and overlying muscles. Among these structures, the role of the CC ligament has continued to be studied because of its importance on shoulder kinematics, especially after AC injury. This study was designed to determine the geometric change of conoid and trapezoid ligaments and resulting stresses on these ligaments according to various scapular motions. Methods: The scapuloclavicular (SC) complex was isolated from a fresh-frozen cadaver by removing all soft tissues except the AC and CC ligaments. The anatomically aligned SC complex was then scanned with a high-resolution computed tomography scanner into 0.6- mm slices. The Finite element model of the SC complex was obtained and used for calculating the stress on different parts of the CC ligaments with simulated movements of the scapula. Results: Average stress on the conoid ligament during anterior tilt, internal rotation, and scapular protraction was higher, whereas the stress on the trapezoid ligament was more prominent during posterior tilt, external rotation, and retraction. Conclusions: We conclude that CC ligament plays an integral role in regulating horizontal SC motion as well as complex motions indicated by increased stress over the ligament with an incremental scapular position change. The conoid ligament is the key structure restraining scapular protraction that might occur in high-grade AC dislocation. Hence in CC ligament reconstructions involving only single bundle, every attempt must be made to reconstruct conoid part of CC ligament as anatomically as possible.

THE EFFECTS OF POSTERIOR RETRACTION ON THE DISPLACEMENT OF THE MAXILLA

  • Yoo, Bo-Yeong;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.26 no.6
    • /
    • pp.691-703
    • /
    • 1996
  • Three-dimensional finite element model was made from adult skull to find desirable direction of retraction force to treat skeletal class II malocclusion. The retraction force of 400g was applied to the first molar. The direction of the force application was $23^{\circ}$ downward, parallel, $23^{\circ}$ upward and $45^{\circ}$ upward to the occlusal plane. The stress distribution and the displacement within the maxilla were analyzed by three-dimensional finite element method. The findings obtained were as follows: 1. Maxillary first molar was displaced posteriorly and inferiorly in $23^{\circ}$ downward, parallel, $23^{\circ}$ upward retraction but it was displaced posteriorly and superiorly in $45^{\circ}$ upward retraction. 2. ANS, A point and prosthion were moved posteriorly and inferiorly and pterygomaxillary fissure was moved posteriorly and superiorly. Clockwise rotation of maxilla occurred when retraction force was applied. 3. The degree of clockwise rotation of maxilla was greatest when the force was applied $23^{\circ}$ upward to the occlusal plane and was least when the force was applied $23^{\circ}$ downward to the occlusal plane. 4. Large tensile stress appeared in maxillary first molar and alveolar bone and the infraorbital region of maxilla when the force was applied $23^{\circ}$ downward to the occlusal plane. Tensile stress was smaller as the direction of force move upward. 5. Large compressive stress was appeared in maxillary first molar and infraorbital region in $45^{\circ}$ upward case and large compressive stress occurred in the posterior part of maxilla as the retraction force was upward.

  • PDF

ON TRANSPORTS DRIVEN BY TIME-VARYING WINDS IN HORIZONTALLY UNBOUNDED SHALLOW SEAS (시간변화적 바람에 따른 넓은 천해에서의 해수유랑)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.17 no.2
    • /
    • pp.41-50
    • /
    • 1982
  • We present theoretical models for the unstedy transports driven by the time-varying wind stress in horizontally unbounded shallow seas of an uniform depth. We derive linearized transport equations that inchude the acceleration, the Coriolis firce, the wind stress and the bottom friction. The steady transport in a shallow sea is different from the classical Ekman transport because of a presence of non-negligible bottom fricttttion. The transient reansport and an inertial oscillation of which frequency of rotation is the same as the frequency of the wind stress forcing. The transprt associated with a wind stress of which direction changes linearlywith time is decribed by a superpoeition so a free inertial oscillation with a pweiod of one inertial day, The theoretical models of the transports are useful in understanding the time-varying currents and the transports of nutrients in shallow seas.

  • PDF

A Two Mobilized-Plane Model for Soil Liquefaction Analysis (액상화해석을 위한 두 개의 활성면을 가진 구성모델)

  • Park, Sung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.173-181
    • /
    • 2006
  • A Two Mobilized-Plane Model is proposed for monotonic and cyclic soil response including liquefaction. This model is based on two mobilized planes: a plane of maximum shear stress, which rotates, and a horizontal plane which is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with simple shear from different $K_0$ states. The proposed model gives a similar skeleton behaviour for soils having the same mean stress, regardless of $K_0$ conditions as observed in laboratory tests. The soil skeleton behaviour observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program of FLAC (Fast Lagrangian Analysis of Continua). The model was first calibrated with drained simple shear tests on Fraser River sand, and verified by comparing predicted and measured undrained behaviour of Fraser River sand using the same input parameters.

Yield penetration in seismically loaded anchorages: effects on member deformation capacity

  • Tastani, S.P.;Pantazopoulou, S.J.
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.527-552
    • /
    • 2013
  • Development of flexural yielding and large rotation ductilities in the plastic hinge zones of frame members is synonymous with the spread of bar reinforcement yielding into the supporting anchorage. Yield penetration where it occurs, destroys interfacial bond between bar and concrete and reduces the strain development capacity of the reinforcement. This affects the plastic rotation capacity of the member by increasing the contribution of bar pullout. A side effect is increased strains in the compression zone within the plastic hinge region, which may be critical in displacement-based detailing procedures that are linked to concrete strains (e.g. in structural walls). To quantify the effects of yield penetration from first principles, closed form solutions of the field equations of bond over the anchorage are derived, considering bond plastification, cover debonding after bar yielding and spread of inelasticity in the anchorage. Strain development capacity is shown to be a totally different entity from stress development capacity and, in the framework of performance based design, bar slip and the length of debonding are calculated as functions of the bar strain at the loaded-end, to be used in calculations of pullout rotation at monolithic member connections. Analytical results are explored parametrically to lead to design charts for practical use of the paper's findings but also to identify the implications of the phenomena studied on the detailing requirements in the plastic hinge regions of flexural members including post-earthquake retrofits.