• Title/Summary/Keyword: Rotation direction

Search Result 700, Processing Time 0.026 seconds

A Study on Active SAR Satellite Maneuver Time Reduction through Sequential Rotation (연속회전을 통한 능동 합성개구레이더위성 기동시간 단축 연구)

  • Son, Jun-Won;Park, Young-Woong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.648-656
    • /
    • 2015
  • Active SAR satellite's main maneuver is roll axis maneuver to change SAR antenna direction. In addition, yaw steering is required to minimize the doppler centroid variation. Thus, it is resonable to assign the torque/momentum capacity mostly to roll axis and then yaw axis. In this case, the pitch axis shows low agility performance. However, due to orbit maintenance, large angle maneuver about pitch axis is sometimes required. In this paper, we study the pitch axis maneuver time reduction through sequential rotation about roll and yaw axis. Since these two axes have high agility performance than pitch axis, maneuver time reduction is possible when large angle rotation about pitch axis is required.

THE EFFECTS OF PLANETARY ROTATION ON THE EXOSPHERIC DENSITY DISTRIBUTIONS OF THE EARTH AND MARS

  • KIM YONG HA;SON SUJEONG
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • We investigate the effects of planetary rotation on the exospheres of the earth and Mars with simple collisionless models. We develope a numerical code that computes exospheric densities by integrating velocity functions at the exobase with a 10 point Gauss method. It is assumed in the model that atoms above the exobase altitude move collisionlessly on an orbit under the planet's gravity. Temperatures and densities at the exobase over the globe are adopted from MSIS-86 for the earth and from Bougher et al's MTGCM for Mars. For both the earth and Mars, the rotation affects the exospheric density distribution significantly in two ways: (1) the variation of the exospheric density distribution is shifted toward the rotational direction with respect to the variation at the exobase, (2) the exospheric densities in general increase over the non-rotating case. We find that the rotational effects are more significant for lower thermospheric temperatures. Both the enhancement of densities and shift of the exospheric distribution due to rotation have not been considered in previous models of Martian exosphere. Our non-spherical distribution with the rotational effects should contribute to refining the hot oxygen corona models of Mars which so far assume simple geometry. Our model will also help in analyzing exospheric data to be measured by the upcoming Nozomi mission to Mars.

  • PDF

A development of automatic detecting equipment for rotation axis of golf ball (골프공 회전 무게중심 검출 시스템)

  • Lee, Jae-woong;Hyun, Woong-keun;Oh, Jun-ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.540-545
    • /
    • 2016
  • Many golf balls have wrong rotation axis owing to bad production and scratch. A flying golf ball makes sliced or curved motion mainly to owing the wrong rotation axis of golf ball. Dimples of golf ball make a golf ball higher and more straight flying. When we hit a golf ball by driver or iron club, the dimpled ball flies straight and rotates as well. While the ball flying, the rotating axis of the ball convergence. And this makes the ball motion curved. If we hit a golf ball in direction of the rotation axis, the flying ball makes straight motion. In this paper, we develop a control system to detect convergence axis and time of flying golf ball based on vision system. To show validity of the developed system, We experimented several case for dimpled golf balls.

  • PDF

A Study on the Influencing Factors on the Estimation of Compressive Strength by Small Size Core (소구경 코어에 의한 콘크리트 압축강도 추정에 미치는 실험인자의 영향에 관한 연구)

  • 한민철;김기정;백병훈;한천구;송성진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.361-364
    • /
    • 2002
  • This paper discusses the influencing factors such as coring position, height to diameter ratio of core specimen(h/d) and coring torque on the strength estimation of concrete by small site coring method in order to verify the validities of small size core method. According to results, as for the influence of drilling position, when core specimens are obtained from the place parallel to placing direction, compressive strength of core specimens are higher than those perpendicular to placing direction. This is due to the loss of the area of core specimen perpendicular to plating direction by bleeding. And in case of $\phi$ 24mm core specimen, when vertical drilling against placing direction is taken. compressive strength of core specimen obtained at the bottom of the structure is higher than that at the top of the structure. As for the influence of height to depth ratio, as h/d ratio increases compressive strength shows to be decreased. As for the influences of rotation speed of drilling machine, as its speed goes up, compressive strength decreases, regardless of core diameter.

  • PDF

Direction Augmented Probabilistic Scan Matching for Reliable Localization (신뢰성 높은 위치 인식을 위하여 방향을 고려한 확률적 스캔 매칭 기법)

  • Choi, Min-Yong;Choi, Jin-Woo;Chung, Wan-Kyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.12
    • /
    • pp.1234-1239
    • /
    • 2011
  • The scan matching is widely used in localization and mapping of mobile robots. This paper presents a probabilistic scan matching method. To improve the performance of the scan matching, a direction of data point is incorporated into the scan matching. The direction of data point is calculated using the line fitted by the neighborhood data. Owing to the incorporation, the performance of the matching was improved. The number of iterations in the scan matching decreased, and the tolerance against a high rotation between scans increased. Based on real data of a laser range finder, experiments verified the performance of the proposed direction augmented probabilistic scan matching algorithm.

The Kinematical Analysis of Li Xiaopeng Motion in Horse Vaulting (도마운동 Li Xiaopeng 동작의 운동학적 분석)

  • Park, Jong-Hoon;Yoon, Sang-Moon
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.3
    • /
    • pp.81-98
    • /
    • 2003
  • The purpose of this study is to closely examine kinematic characteristics by jump phase of Li Xiaopeng motion in horse vaulting and provide the training data. In doing so, as a result of analyzing kinematic variables through 3-dimensional cinematographic using the high-speed video camera to Li Xiaopeng motion first performed at the men's vault competition at the 14th Busan Asian Games, the following conclusion was obtained. 1. It was indicated that at the post-flight, the increase of flight time and height and twisting rotational velocity has a decisive effect on the increase of twist displacement. And Li Xiaopeng motion showed longer flight time and higher flight height than Ropez motion with the same twist displacement of entire movement. Also the rotational displacement of the trunk at peak of COG was much short of $360^{\circ}$(one rotation) but twist displacement showed $606^{\circ}$. Likewise, Li Xiaopeng motion was indicated to concentrate on twist movement in the early flight. 2. It was indicated that at the landing, Li Xiaopeng motion gets the hip to move back, the trunk to stand up and the horizontal velocity of COG to slow down. This is thought to be the performance of sufficient landing, resulting from large security of rotational displacement of airborne and twist displacement. 3. It was indicated that at the board contact, Li Xiaopeng motion made a rapid rotation uprighting the trunk to recover slowing velocity caused by jumping with the horse in the back, and has already twisted the trunk nearly close to $40^{\circ}$ at board contact. Under the premise that elasticity is generated without the change of the feet contacting the board, it will give an aid to the rotation and twist of pre-flight. Thus, in the round-oH phase, the tap of waist according to the fraction and extension of hip joint and arm push is thought to be very important. 4. It was indicated that at the pre-flight, Li Xiaopeng motion showed bigger movement than the techniques of precedented studies rushing to the horse, and overcomes the concern of relatively low power of jump through the rapid rotation of the trunk. Li Xiaopeng motion secured much twist distance, increased rotational distance with the trunk bent forward, resulting in the effect of rushing to the horse. 5. At horse contact, Li Xiaopeng motion makes a short-time contact, and maintains horse take-off angle close to vertical, contributing to the increase of post-flight time and height. This is thought to be resulted from rapid move toward movement direction along with the rotational velocity of trunk rapidly earned prior to horse contact, and little shave of rotation axis according to twist motion because of effective twist in the same direction.

A STUDY OF HOLOGRAPHIC INTERFEROMETRY ON THE INITIAL REACTION OF MAXILLOFACIAL COMPLEX TO THE MAXILLARY PROTRACTION USING THE ANTENNA TYPE MODIFIED PROTRACTION HEAD GEAR (Modified Protraction Headgear를 이용한 상악골 전방 견인시 악안면골의 초기반응에 관한 Holographic Interferometry 연구)

  • Lee, Kong-Geun;Ryu, Young-Kyu
    • The korean journal of orthodontics
    • /
    • v.22 no.3 s.38
    • /
    • pp.531-556
    • /
    • 1992
  • The majority of the commonly used protraction headgears for the protraction of small and/or retropositioned maxilla not allow a change in the point of force application or direction of the force delivery to attain predictable results because of the position of the upper and lower lips to avoid discomfort to the patient. The purpose of this study was to investigate the initial reaction of maxillofacial complex according to the change of force variables such as direction and point of force application with designing an antenna type-modified protraction head gear. A macerated human skull with well aligned upper teeth was used to experimental model and the investigation was done by double exposure holographic interferometry. Fringe patterns of each protraction conditions were compared and analized. The results were as follows. (Frontal view) 1. The Counterclockwise rotation of the maxilla was showed by parallel protraction to occlusal plane and the fringe was decreased in number as higher point of force application. 2. Generally, the number of fringe was increased in 500gm of protraction force than in 300gm. 3. When apply the protraction force to the maxilla with rapid palatal expansion, the direction of fringe patterns was differed from the protraction without expansion. 4. In most of cases, the counterclockwise rotation was decreased in case of the direction of the force is $20^{\circ}$ downward to occlusal plane compared to the parallel direction. 5. At the point of force application is 15mm above and the direction of force is 20 downward to occlusal plane , the translation of the maxillary complex was showed. (Lateral view) 6. The direction of fringe patterns of the facial bones were differed each other by the sutures, and showed almost parallel when apply the 300gm and 500gm of protraction force. 7. In case of rapid palatal expansion with protraction of the maxilla, the fringe patterns between the maxillary area and the area from the posterior of the maxillary first molar to the pterygomaxillary fissure were differed. In case without rapid palatal expansion, the changes of direction and point of the force application did not affect to the direction and the number of the fringe patterns.

  • PDF

Finite Element Stress Analysis of Implant Prosthesis according to Position and Direction of Load (하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소법적 응력분석)

  • Bae, Sook-Jin;Chung, Chae-Heon;Jeong, Seung-Mi
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.257-268
    • /
    • 2003
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis according to position and direction of load, under vertical and inclined loading using FEA analysis. The finite element model was designed according to standard fixture (4.1mm restorative component x 11.5mm length). The crown for mandibular first molar was made using UCLA abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric usp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment screw. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant in both vertical and oblique loading but stresses in the cancellous bone were low in both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. 4. The relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 5. The magnitude of the stress in the supporting bone, fixture and abutment screw was greater with the outward oblique loading than with the inward oblique loading and was the greatest under loading at the centric cusp in a $30^{\circ}$ outward oblique direction. Conclusively, this study provides evidence that bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. But it seems to be more important that how long is the distance from center of rotation of the implant itself to the resultant line of force from occlusal contact(leverage). The goal of improving implants should be to avoid bending of the implant.

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

The influence of horizontal cephalic rotation on the deviation of mandibular position

  • Katayama, Naoto;Koide, Kaoru;Koide, Katsuyoshi;Mizuhashi, Fumi
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.6
    • /
    • pp.401-407
    • /
    • 2018
  • PURPOSE. When performing an occlusal procedure, it is recommended that the patient should be sitting straight with the head in a natural position. An inappropriate mandibular position caused by an incorrect occlusal record registration or occlusal adjustment can result in damaged teeth and cause functional disorders in muscles and temporomandibular joints. The purpose of this study was to clarify the influence of horizontal cephalic rotation on mandibular position by investigating the three-dimensional positions of condylar and incisal points. MATERIALS AND METHODS. A three-dimensional jaw movement measurement device with six degrees of freedom (the WinJaw System) was used to measure condylar and incisal points. The subjects were asked to sit straight with the head in a natural position. The subjects were then instructed to rotate their head horizontally $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, $40^{\circ}$, $50^{\circ}$and $60^{\circ}$ in the right or left direction. RESULTS. The results indicated that horizontal cephalic rotation made the condyle on the rotating side shift forward, downward, and toward the inside, and the condyle on the counter rotating side shift backward, upward, and toward the outside. Significant differences in deviations were found for angles of rotation higher than $20^{\circ}$. The incisal point shifted in the forward and counterrotating directions, and significant differences were found for angles of rotation higher than $20^{\circ}$. CONCLUSION. The mandibular position was altered by horizontal cephalic rotations of more than $20^{\circ}$. It is essential to consider the possibility of deviation of the mandibular position during occlusal procedures.