• Title/Summary/Keyword: Rotating-Shaft Design

Search Result 99, Processing Time 0.026 seconds

Study on Design of Coupling Bolt for Shaft in Power Plant (발전용 축계 결합용 커플링 볼트 설계에 관한 연구)

  • Jeong, HoSeung;Son, ChangWoo;Cho, JongRae;Kim, Tae Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.5
    • /
    • pp.707-713
    • /
    • 2013
  • Coupling bolts have replaced conventional fitted bolts in applications where the operator's safety during assembly/disassembly is of concern or where the cost of process interruption is significant. Coupling bolts have been installed on rotating flange couplings in a wide range of marine and power applications worldwide. Their use has been approved by all leading international and national classification societies and regulatory bodies. A coupling bolt is a hydraulically tensioned fitted bolt that creates a stable and rigid link between coupling flanges and simplifies assembly and disassembly. We measure the bolt dimensions for reverse engineering and study the standard of assembly-load using a mechanical formula in order to localize a coupling bolt for a shaft in a power plant. We experimentally obtain the friction coefficient and confirm the condition of bolt sets through structure analysis. We show the variation of contact pressure for the shape parameter in order to consider the result when redesigning a bolt.

Fatigue Analysis for Electro-Mechanical Brake Caliper based on Eccentric Rotating Shaft (편심회전축 기반의 전기기계식 제동장치의 피로수명 해석)

  • Oh, Hyuck Keun;Beak, Seung-Koo;Jeon, Chang-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.9
    • /
    • pp.596-603
    • /
    • 2020
  • 'Electro-Mechanical Brake (EMB) is a novel braking system for automobiles and railway vehicles, and research in this area is actively underway. The current braking system for railway vehicles generates a braking force using a pneumatic cylinder, but the EMB system generates the force through a combination of an electric motor and gears. In this study, the design of an EMB system that meets the domestic standards was conducted through the finite element modeling and fatigue analysis of an eccentric rotating shaft-based EMB system capable of generating a high clamping force. At this time, to improve the accuracy of fatigue analysis, three types of fatigue test specimens, which were subjected to the same heat treatment as the materials used in the prototype, were produced, and the fatigue tests were performed for each material. The fatigue properties (S-N curves) were obtained from the fatigue test results for each material and reflected in the analysis model. The results of fatigue analysis confirmed that the design of the EMB prototype could satisfy the maximum commercial braking/relaxation of 530,000 times, which was the endurance life condition for domestic railway vehicles. In addition, based on this design, a prototype will be manufactured, and endurance testing will be completed to demonstrate the durability characteristics of the developed prototype.

Free and Forced Vibration Analyses of HDD Spindle Systems Supported by Hydrodynamic Bearings (유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동 해석)

  • 임승철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.852-859
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles in hard disk drives are to be supported by hydrodynamic bearings in place of conventional ball-type ones. However, the existing models are inappropriate to apply to accurate prediction of vibration characteristics because the HDD spindle tends to take quite a complex shape to secure its performance and cost-effectiveness. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validations via experiments. Remarkably, to this end all the components in the system are modeled as elastic adopting the finite element method.

Free and Forced Vibrations of HDD Spindle Systems Supported by Hydrodynamic Bearings (유체 동압 베어링 지지 HDD 스핀들 계의 자유 및 강제 진동)

  • 임승철
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.598-604
    • /
    • 2003
  • In order to meet the growing demands for higher storage density as well as lower noise level, the spindles In hard disk drives are to be supported by hydrodynamic bearings in place of conventional ones. However, the existing models are inappropriate to apply to accurate Prediction or vibration characteristics because the Inn spindle tends to take quite a complex shape to secure the performance of the new type bearings. In this context, this paper treats analysis of free and forced vibrations of such-designed HDD spindles based on more sophisticated models and validation by means of experiments. Remarkably, to this end each component in the system is modeled as elastic adopting the finite element method.

  • PDF

Feasibility Study on the New Structure of a Spindle Motor for Hard Disk Drive

  • Kim, Tae-Woo;Chang, Jung-Hwan
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.295-299
    • /
    • 2013
  • This paper presents the new structure of a spindle motor for hard disk drive (HDD). It can produce axial force as well as torque without a pulling plate or a pulling magnet required for the normal operation of a hydrodynamic bearing in rotating-shaft structure. The proposed models have different air gap length along the axial direction by changing the thickness of permanent magnet (PM). One has a single slope and the other has double slopes on the surface of PM. For the design of the proposed models, variables are defined and its effects on the motor performances are investigated by 3-demensional finite element analysis (FEA). The equi-performance curves are investigated for the main characteristics of the spindle motor such as generated torque, axial force and torque ripple ratio. The validity of the proposed models is verified by the feasibility study and performance evaluation.

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

Effect of lamination pressing force for stiffness variation of a laminated rotor (적층로터의 강성 변경을 위한 적층판 압착력의 영향)

  • 김영춘;박희주;김경웅
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.788-792
    • /
    • 2003
  • Rotating machines are widely used in industrial world and especially motor and generator take up much part of it. As for this kind of motor and generator, electrical loss due to eddy current is the very important factor and that is also a primary factor causes heat generation. To solve this kind of problem like the above. insulated laminating silicon steel sheet is used to prevent eddy current effect. Laminated rotor is widely used as rotating shaft of motor and generator. Due to that, electrical loss and heat problem can be solved but designer meets another problem. In general. most of the motor and generator can be normally operated under 3,600 rpm because they are designed to have the first critical speed more than that speed. But nowadays, they should be operated more than the first critical speed as usual with the trend of high speed, large scale and high precision in industrial world. The critical speed can be determined from the inertia and stillness for the rotor and bearing of rotating systems. The laminated rotor stiffness can be hardly determined because it can be derived a lot factors for instance rotor material and shape, lamination material and shape, insulation material. lamination force and so on. In this paper, the change of the natural frequency of the motor was examined with the change of the lamination force as an experimental method and design criteria will be presented for motor & generator designer, who can apply the result of numerical analysis with equivalent diameter scheme with ease.

  • PDF

A Lubrication Performance Analysis of Mechanical Face Seals Using Galerkin Finite Element Method (갤러킨 유한요소해석법을 이용한 미케니컬 페이스 실의 윤활성능해석)

  • Choe, Byeong-Ryeol;Lee, An-Seong;Choe, Dong-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.916-922
    • /
    • 2001
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface between a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance of the mating seal faces gets smaller. But the very small seal clearance results in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, and it presents a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby it is one of the main design considerations. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries. Film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, lubrication performances of the seals, such as opening forces, restoring moments, leakage, and dynamic coefficients, are calculated, and they are compared to the results obtained by the narrow seal approximation.

A Study on the Design of Transmission Oil-Seal Using 2D Finite Element Analysis (2D 유한요소해석을 이용한 트랜스미션 오일 씰 설계에 관한 연구)

  • Yoon, Hyun-cheol;Jeon, Gi Hyun;Choi, Ju Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.1
    • /
    • pp.85-93
    • /
    • 2019
  • Oil seals are most essential parts in mechanical lubrication system to maintain the close gaps between stationary and high rotating components, and to help prevent oil leakages. Oil seals also can prevent harmful contaminants entering from outside to machinery, especially in severe environments. Therefore, the oil seals have an important performance in the machinery components. The performance of the oil seals are influenced by the design variables such as amount of interference gap between the main lip and shaft, the angle of main lip at air and oil sides and the distance between the garter spring and main lip. In the present study, a finite element analysis was performed to evaluate the oil seal performance with the considerations of number of oil seal dust lips and angle of the lip at oil side with the different design variables. As a result from the FEM analysis, the stress and contact pressure distributions was derived, based on this, performance of the sealing and durability were determined.

Optimization for Configuration and Material Cost of Helical Pile Using Harmony Search Algorithm (하모니서치 알고리즘을 이용한 헬리컬 파일의 형상 및 재료비 최적 설계기법에 대한 연구)

  • Na, Kyunguk;Lee, Dongseop;Lee, Hyungi;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.377-386
    • /
    • 2015
  • The helical pile is a manufactured steel pile consisting of one or more helix-shaped bearing plates affixed to a central shaft. This pile is installed by rotating the shaft into the ground to support structural loads. Advantages of the helical pile are no need for boring or grout process, and ability to install a pile foundation with relatively light devices. In this study, an optimized design method for helical piles is proposed to minimize the material cost with consideration of the load bearing capacity obtained by the cylindrical shear method. The harmony search meta-heuristic algorithm was adopted for optimization process. The optimized design was verified by comparing with the 2009 International building code. It is noted that the optimization for the configuration of helical piles along with material cost proves to be an out-performed tool in designing helical pile foundation with economic feasibility.