• Title/Summary/Keyword: Rotating ring-disk electrode

Search Result 9, Processing Time 0.018 seconds

Formation of Soluble Intermediate During the Electrochemical Crystallization of Lead Dioxide

  • Hwang, Eui-Jin;Kim, Ha-Suck
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.390-393
    • /
    • 1994
  • Details on the electrochemical formation of lead dioxide from aqueous plumbous ion are studied by measuring current-time behavior with potential step method at a rotating platinum electrode. A cubic law without induction period can be applied to the crystallization of lead dioxide in both acetate and nitrate media. In the course of the mechanistic study, the presence of a soluble intermediate during the nucleation step is clearly observed with a rotating ring-disk electrode. Decrease in the anodic ring current due to the reduction of soluble species formed during the anodic crystallization of lead dioxide at disk is detected.

Mechanistic Studies on the Formation of Soluble Intermediate during the Electrochemical Nucleation of Lead Dioxide

  • Hwang Euijin;Cho Keunchang;Kim Ho Il;Kim Hasuck
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1054-1058
    • /
    • 1994
  • Different behavior on the formation of soluble intermediate was observed depending on the substrate employed during the nucleation of lead dioxide from plumbous ion using a rotating ring-disk electrode. It was found that no soluble intermediate was formed at glassy carbon electrode, while the presence of soluble intermediate could be detected at platinum substrate. From the different anodic behavior of two substrates, the formation of a probable Pb(Ⅲ) soluble intermediate was suggested. A most probable nucleation mechanism at the platinum substrate involving a second order chemical reaction was derived on the basis of rotating disk electrode experiments.

Synthesis and Characterization of Non-precious Metal Co-PANI-C Catalysts for Polymer Electrolyte Membrane Fuel Cell Cathodes (고분자 전해질 연료전지 캐소드용 코발트-폴리아닐린-탄소로 구성된 비귀금속 촉매의 제조 및 특성 평가)

  • Choi, Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • In order to overcome the cost issue for commercialization of polymer electrolyte membrane fuel cell (PEMFC), this research was conducted for replacing platinum cathode catalyst with non-precious metal catalyst. The non-precious metal catalyst (Co-PANI-C) was synthesized by the simple reduction method with polyaniline (PANI), carbon black, and cobalt precursor without any heat treatment. Characterization of new Co-PANI-C composite catalysts was done by the measurement of X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for structure analysis and performed by rotating disk electrode (RDE) and rotating ring disk electrode (RRDE) for electrochemical analysis. As a result, Co-PANI-C catalyst showed 60 mV lower on-set potential for oxygen reduction reaction (ORR) than Pt/C catalyst, but the overall reduction current of Co-PANI-C catalysts by ORR was still smaller than that of Pt/C. In addition, the ORR behavior of Co-PANI-C catalysts depending on the rotation speed of electrode and the stability of Co-PANI-C catalyst under potential cycling and the performance of fuel cell conditions are also discussed.

Electrochemical Studies on the Reaction of Superoxide Ion with Halocarbons in Aprotic Media

  • Jeon, Seungwon;Choi, Yong-Kook
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.649-654
    • /
    • 1995
  • The reactivity of superoxide ion($O{_2}^{-.}$) with halogenated substrates is investigated by cyclic voltammetry and rotated ring-disk electrode method in aprotic solvents. The more positive the reduction potential of the substituted nitrile, the more facile is nucleophilic displacement by $O{_2}^{-.}$. The reaction rates of halogenonitriles with $O{_2}^{-.}$ vary according to the leaving-group propensity of halide (Br>Cl>F). The relative reaction rates of other substituted nitriles are in the order of electron-withdrawing propensity of the substituent group (CN> $C(O)NH_2$ >Ph, $CH_2CN$). The reaction of $O{_2}^{-.}$ with dihalocarbons indicates that five-membered rings can be rapidly formed by the cyclization of substrate and $O{_2}^{-.}$, and the relative rates of cyclization depend on the number of methylenic carbons {$Br(CH_2)_nBr$, [n=1<2<3>4>5]}. Mechanisms are proposed for the reaction of $O{_2}^{-.}$ with halogenated substrates.

  • PDF

Poly(3,4-ethylenedioxythiophene) Electrodes Doped with Anionic Metalloporphyrins

  • 송의환;여인형;백운기
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1303-1308
    • /
    • 1999
  • Conducting poly(3,4-ethylenedioxythiophene) (PEDT) films with metalloporphyrins incorporated as the counter ions were prepared by electropolymerization of the monomer in the presence of metal-tetra(sulfonatophenyl) porphyrin anions. Cathodic reduction of oxygen on the resulting conducting polymer films was studied. The overpotential for O2 reduction on electrodes with cobalt-porphyrin complex was significantly smaller in acidic solutions than on gold. In basic solutions, the overpotential at low current densities was close to those on platinum and gold. Polymer electrode with Co-complex yielded higher limiting currents than with Fe-complex, although the Co-complex polymer electrode was a poorer electrocatalyst for O2 reduction in the activation range of potential than the Fe counterpart. From the rotating ring-disk electrode experiments, oxygen reduction was shown to proceed through either a 4-electron pathway or a 2-electron pathway. In contrast to the polypyr-role-based electrodes, the PEDT-based metalloporphyrin electrodes were stable with wider potential windows, including the oxygen reduction potential. Their electrocatalytic properties were maintained at temperatures up to 80℃ in KOH solutions.

Electrocatalytic Reduction of Molecular Oxygen at Poly(1,8-diaminonaphthalene) and Poly(Co(II)-(1,8-diaminonaphthalene)) Coated Electrodes

  • Park, Hyun;Kwon, Tae-guen;Park, Deog-Su;Shim, Yoon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1763-1768
    • /
    • 2006
  • The application of poly(Co(II)-(1,8-diaminonaphthalene))(poly(Co-DAN)) and poly(1,8-diaminonaphthalene) (Poly(1,8-DAN)) to the electrocatalytic reduction of molecular oxygen was investigated, which were electrochemically grown by the potential cycling method on the glassy carbon electrodes. The reduction of oxygen at the polymer and its metal complex polymer coated electrodes were irreversible and diffusion controlled. The Poly(1,8-DAN) and Poly(Co-DAN) films revealed the potential shifts for the oxygen reduction to 30 mV and 110 mV, respectively, in an aqueous solution, compared with that of the bare electrode. Hydrodynamic voltammetry with a rotating ring-disk electrode showed that Poly(1,8-DAN) and Poly(Co-DAN) coated electrodes converted respectively 84% and 22% of $O_2$ to $H_2O$ via a four electron reduction pathway.

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell (고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Choi, Changkun;Joh, Han-Ik;Park, Jong Jin;Kwon, Yongchai
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.4
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.

Development of methanol resistance catalysts for DMFC cathodes (Methanol에 저항성을 가진 DMFC용 cathode catalyst의 개발)

  • Oh, Jong-Gil;Kim, Han-Sung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.204-207
    • /
    • 2007
  • DMFC(direct methanol fuel cell)는 액체연료의 이동과 저장의 용이성 때문에 이동용 장치를 위한 전원공급 장치로서 오랫동안 관심을 받아왔다. 하지만 methanol crossover는 DMFC의 상용화 이전에 해결해야 할 문제이다. 이를 위해 많은 분야에서 연구가 진행되고 있고, 그중에서 methanol에 저항성을 가진 촉매의 개발에 활발히 연구가 진행되고 있다. 본 연구에서는, 표연개질 된 PtCo/C 촉매를 사용하여 메탄올에 저항성을 가진 촉매를 합성하였다. 합성된 촉매의 size와 morphology를 알아보기 위해 transmission electron microscopy (TEM)를 사용하였다. 또한 methanol 존재 하에 산소환원반응의 activity를 알아보기 위해 Rotating ring disk electrode(RRDE) test를 하였고, MEA를 제작하여 full cell test도 병행하였다.

  • PDF

A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized by a Modified Polyol Process (수정된 폴리올 방법을 적용하여 합성한 PtM 촉매들의 산소환원반응성 연구)

  • Yang, Jongwon;Hyun, Kyuwhan;Chu, Cheunho;Kwon, Yongchai
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2014
  • In this research, we evaluated the performance and characteristics of carbon supported PtM (M = Ni and Y) alloy catalysts (PtM/Cs) synthesized by a modified polyol method. With the PtM/Cs employed as a catalyst for the oxygen reduction reaction (ORR) of cathodes in proton exchange membrane fuel cells (PEMFCs), their catalytic and ORR activities and electrical performance were investigated and compared with those of commercial Pt/C. Their particle sizes, particle distributions and electrochemically active surface areas (EAS) were measured by TEM and cyclic voltammetry (CV), while their ORR activity and electrical performance were explored using linear sweeping voltammetries with rotating disk electrodes and rotating ring-disk electrodes as well as PEMFC single cell tests. TEM and CV measurements show that PtM/Cs have the compatible particle size and EAS with Pt/C. When it comes to ORR activity, PtM/C showed the equivalent or better half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production(%) to or than commerical Pt/C. Based on results gained by the three electrode tests, when the PEMFC single cell tests were carried out, the current density measured at 0.6 V and maximum power density of PEMFC single cell adopting PtM/C catalysts were better than those adopting Pt/C catalyst. It is therefore concluded that PtM/C catalysts synthesized by modified polyol can result in the equivalent or better ORR catalytic capability and PEMFC performance to or than commercial Pt/C catalyst.