• 제목/요약/키워드: Rotating blade

검색결과 450건 처리시간 0.026초

회전(回轉)하는 나선(螺旋)날개 위에서의 경계층(境界層) 해석(解析) (Numerical Calculation of Turbulent Boundary Layer on Rotating Helical Blades)

  • 오건제;강신형
    • 대한조선학회지
    • /
    • 제21권2호
    • /
    • pp.9-17
    • /
    • 1984
  • Laminar and turbulent boundary layers on a rotating sector and a helical blade are calculated by differential method. The estimation of three dimensional viscous flows provide quite useful informations for the design of propellers and turbo-machinery. A general method of calculation is presented in this paper. Calculated laminar boundary layer on a sector shows smooth development of flows from Blasius' solution at the leading edge to von Karman's solution of a rotating disk at the down-stream. Eddy viscosity model is adopted for the calculation of turbulent flows. Turbulent flows on a rotating blade show similar characters as laminar flows. But cross-flow angle of turbulent flows are reduced in comparison with laminar boundary layers. Effects of rotation make flow structures significantly different from two-dimensional flows. In the range of Reynolds number of model scale propellers, large portion of the blade are still in the transition region from laminar to turbulent flows. Therefore viscous flow pattern might be quite different on the blade of model propeller. The present method of calculation is to be useful for the research of scale effects, cavitation, and roughness effects of propeller blades.

  • PDF

가스터빈 날개의 냉각에 대한 연구동향 (A Review of the Study on a Blade Cooling for the Gas Turbine)

  • 장태현;길상철;조홍곤
    • 한국산업융합학회 논문집
    • /
    • 제11권2호
    • /
    • pp.65-70
    • /
    • 2008
  • This study presents gas turbine cooling blade by using experimental and numerical works. The review cover researches related to cooling channels using finite element method in rotating blade. Also, the film cooling device and the heat transfer of the external surface of the blade are included. In addition, several methods to be used for the design of the blade, numerical method and experimental techniques are introduced. This work will contribute to improving the manufacturing of engine and the efficiency of gas turbine engines.

  • PDF

Aerodynamic analysis and control mechanism design of cycloidal wind turbine adopting active control of blade motion

  • Hwang, In-Seong;Lee, Yun-Han;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제8권2호
    • /
    • pp.11-16
    • /
    • 2007
  • This paper describes the cycloidal wind turbine, which is a straight blade vertical axis wind turbine using the cycloidal blade system. Cycloidal blade system consists of several blades rotating about an axis in parallel direction. Each blade changes its pitch angle periodically. Cycloidal wind turbine is different from the previous turbines. The wind turbine operates with optimum rotating forces through active control of the blade to change pitch angle and phase angle according to the changes of wind direction and wind speed. Various numerical experiments were conducted to develop a small vertical axis wind turbine of 1 kW class. For this numerical analysis, the rotor system equips four blades consisting of a symmetric airfoil NACA0018 of 1.0m in span, 0.22m in chord and 1.0m in radius. A general purpose commercial CFD program, STAR-CD, was used for numerical analysis. PCL of MSC/PATRAN was used for efficient parametric auto mesh generation. Variables of wind speed, pitch angle, phase angle and rotating speed were set in the numerical experiments. The generated power was obtained according to the various combinations of these variables. Optimal pitch angle and phase angle of cycloidal blade system were obtained according to the change of the wind direction and the wind speed. Based on data obtained from the above analysis, control device was designed. The wind direction and the wind speed were sensed by a wind indicator and an anemometer. Each blades were actuated to optimal performance values by servo motors.

상반회전 프로펠러의 날개수 조합에 따른 축기진력 연구 (Numerical Study on the Effects of Combination of Blade Number for Shaft Forces and Moments of Contra-Rotating Propeller)

  • 백광준;이진석;이태구;;박형길;서종수
    • 대한조선학회논문집
    • /
    • 제50권5호
    • /
    • pp.282-290
    • /
    • 2013
  • The effects of the combination of blade number for forward and after propeller on the propeller shaft forces of a contra-rotating propeller (CRP) system are presented in the paper. The research is performed through the numerical simulations based on the Reynolds-Averaged Navier-Stokes equations (RANS). The simulation results of the present method in open water condition are validated comparing with the experimental data as well as the other numerical simulation results based on the potential method for 4-0-4 CRP (3686+3687A) and 4-0-5 CRP (3686+3849) of DTNSRDC. Two sets of CRP are designed and simulated to study the effect of the combination of blade number in behind-hull condition. One set consists of 3-blade and 4-blade, while the other is 4-blade and 4-blade. A full hull body submerged under the free surface is modeled in the computational domain to simulate directly the wake field of the ship at the propeller plane. From the simulation results, the fluctuations of axial force and moment are dominant in the case of same blade numbers for forward and after propellers, whereas the fluctuations of horizontal and vertical forces and moments are very large in the case of different blade numbers.

Comparison of simplified model and FEM model in coupled analysis of floating wind turbine

  • Kim, Byoung Wan;Hong, Sa Young;Sung, Hong Gun;Hong, Seok Won
    • Ocean Systems Engineering
    • /
    • 제5권3호
    • /
    • pp.221-243
    • /
    • 2015
  • This paper compares simplified and finite element method (FEM) models for tower and blade in dynamic coupled analysis of floating wind turbine. A SPAR type wind turbine with catenary mooring lines is considered in numerical analysis. Floating body equation is derived using boundary element method (BEM) and convolution. Equations for mooring line, tower and blade are formulated with theories of catenary, elastic beam and aerodynamic rotating beam, respectively and FEM is applied in the formulation. By combining the equations, coupled solutions are calculated. Tower or blade may be assumed rigid or lumped body for simplicity in modeling. By comparing floating body motions, mooring line tensions and tower stresses with the simple model and original FEM model, the effect of including or neglecting elastic, rotating and aerodynamic behavior of tower and blade is discussed.

HMM/ANN복합 모델을 이용한 회전 블레이드의 결함 진단 (Fault Diagnosis of a Rotating Blade using HMM/ANN Hybrid Model)

  • 김종수;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제23권9호
    • /
    • pp.814-822
    • /
    • 2013
  • For the fault diagnosis of a mechanical system, pattern recognition methods have being used frequently in recent research. Hidden Markov model(HMM) and artificial neural network(ANN) are typical examples of pattern recognition methods employed for the fault diagnosis of a mechanical system. In this paper, a hybrid method that combines HMM and ANN for the fault diagnosis of a mechanical system is introduced. A rotating blade which is used for a wind turbine is employed for the fault diagnosis. Using the HMM/ANN hybrid model along with the numerical model of the rotating blade, the location and depth of a crack as well as its presence are identified. Also the effect of signal to noise ratio, crack location and crack size on the success rate of the identification is investigated.

Performance Research of Counter-rotating Tidal Stream Power Unit

  • Wei, Xuesong;Huang, Bin;Liu, Pin;Kanemoto, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2016
  • An experimental investigation was carried out to improve the performance of a counter-rotating type horizontal-axis tidal stream power unit. Front and rear blades were designed separately based on modified blade element momentum (BEM) theory, and their performances at different conditions of blade tip speed ratio were measured in a wind tunnel. Three different groups of blades were designed successively, and the results showed that Group3 possessed the highest power coefficient of 0.44 and was the most satisfactory model. This experiment shows that properly increasing diameter and reducing chord length will benefit the performance of the blade.

초기 비틀림이 있는 회전하는 복합재료 블레이드의 진동특성에 대한 연구 (Vibration Characteristics of Rotating Composite Blades with Initial Twist)

  • 기영중;김지환
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.127-130
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of the present study. In this study, general formulation is performed for rotating shell structures including the centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open cylindrical shell. Based on the concept of degenerated shell element with the Reisser-Mindlin's assumptions, the finite element method is adopted for solving the problems. In addition, it is investigated the effect of the stacking sequence of the composites on the vibration characteristics of the blade. The results are summarized for the various parameters such as the speed of rotation and pre-twist of the blade. Also, present results are compared with the previous works and experimental data.

  • PDF

軸流壓縮機 回轉翼列의 流出偏差角에 관한 硏究 (A study on the deviation angle of the rotating blade row in an axial- flow compressor)

  • 조강래;방영석
    • 대한기계학회논문집
    • /
    • 제12권6호
    • /
    • pp.1407-1414
    • /
    • 1988
  • 본 연구에서는 저자들에 의해 이미 개발된 경계유선수정법에 의한 B-B 유동계 산을 통해 익열의 편차각을 계산하고 기존의 예측방법에 의한 결과와 비교 검토하여 압축성 및 3차원 비축대칭성의 효과를 검토하였다.

회전 외팔평판의 면외 방향 굽힘진동 해석 (Flapwise Bending Vibration Analysis of Rotating Cantilever Plates)

  • 김성균;유홍희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.613-618
    • /
    • 2000
  • It is well known that the rotating motion of a blade-like structure induces centrifugal inertia force that causes the variation of the natural frequencies of the structure. Even though most of blade-like structures can be successfully Idealized as beams, some behave like plates rather than beams. This paper presents a modeling method for the flapwise bending vibration analysis of rotating cantilever plates. The dependence of natural frequencies and free vibration modes on the angular speed as well as the aspect ratio of a rotating plate is investigated. Particularly. the natural frequency loci crossing is observed and discussed In the present study.

  • PDF