• Title/Summary/Keyword: Rotating Torque

Search Result 306, Processing Time 0.022 seconds

Stator Shape Optimization for Electrical Motor Torque Density Improvement

  • Kim, Hae-Joong;Kim, Youn Hwan;Moon, Jae-Won
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.570-576
    • /
    • 2016
  • The shape optimization of the stator and the rotor is important for electrical motor design. Among many motor design parameters, the stator tooth and yoke width are a few of the determinants of noload back-EMF and load torque. In this study, we proposed an equivalent magnetic circuit of motor stator for efficient stator tooth and yoke width shape optimization. Using the proposed equivalent magnetic circuit, we found the optimal tooth and yoke width for minimal magnetic resistance. To verify if load torque is truly maximized for the optimal tooth and yoke width indicated by the proposed method, we performed finite element analysis (FEA) to calculate load torque for different tooth and yoke widths. From the study, we confirmed reliability and usability of the proposed equivalent magnetic circuit.

A Study on the Measurement of Load Torque by the Field Coil Current in an Eddy Current Dynamometer (와전류 동력계에서 계자전류를 이용한 부하토크의 측정에 관한 연구)

  • Mun, Byung-Su;Lee, Eung-Suk;Lee, Hyung-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.84-92
    • /
    • 2001
  • Commercial eddy current dynamometers control the torque of rotating body, power supply machine, with the field coil current being operated as a braking force. In this paper, we studied the relation between field coil current and torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer it is linear relation between the brake force measured from a torque meter which is installed at the case of dynamometer and the multiplied shaft rpm by the squares of field coil current (N$\times$I$^2$). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of the eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measure the torque of rotating body without a torque measuring device. such as load cell.

  • PDF

Speed Sensorless Torque Monitoring On CNC Lathe Using Internet (인터넷을 이용한 CNC 선반의 속도 센서리스 토크감시)

  • 홍익준;권원태
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.467-470
    • /
    • 2002
  • Internet provides the useful method to monitor the current states of the machine tool no matter where a personnel is monitoring them. In this paper, a monitoring method of the torque of the machine tool's spindle induction motor using internet is suggested. The torque of vector controlled induction motor is estimated without speed measuring sensor. Only stator currents are measured to estimate the magnetizing current which is used to calculate flux linkage, rotor velocity and motor torque. Graphical programming is used to implement the suggested algorithm, to monitor the torque of an induction motor in real time and to make the estimated torque monitored on client computers. To solve the fluctuation problem of estimated torque caused from instantly varying rotating speed of an induction motor, the rotating speed is reconstructed based on the measured current signals. Mechanical part of the machine tool is also reconstructed using the data obtained from preliminary experiments. Torque of the spindle induction motor is well monitored on the client computers with 3% error range under various cutting conditions.

  • PDF

Experimental Study on the Friction Torque Characteristics of Magnetic Fluid Seals for High Vacuum System (고진공용 자성유체시일이 마찰 토오크 특성에 관한 실험적 연구)

  • 김청균;나윤환;김한식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.145-152
    • /
    • 1996
  • This paper deals with an experimental study on the f~iction torque characteristics of magnctic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the fi'iction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model II is 1.73 ~ 2.56, 2.0 ~ 2.89, 2.0 - 3.25 times larger than those of Model I under the atmospheric pressure, vacuum pressure(10$^{-4}$ and 10$^{-6}$ torr), respectively.

  • PDF

CFD-Based Flow Analysis of Rolling Elements in Water-Lubricated Ball Bearings (CFD를 이용한 수윤활 볼베어링의 구름 요소 주위의 마찰 토크분석)

  • Jo, Jun Hyeon;Kim, Choong Hyun
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.218-222
    • /
    • 2013
  • Water-lubricated ball bearings consist of rolling elements, an inner raceway, an outer raceway, a retainer, and an operating lubricant. In the water environment, ball bearings are required to sustain high loads at high speeds under poorly lubricated conditions. For the analysis of bearing behavior, friction torque is considered as the main factor at various flow rates, rotating speeds, and roughnesses between the rolling element and raceways. When the bearing operates at high rotating speeds, the friction torque between the raceway and rolling elements increases considerably. This frictional torque is an important factor affecting bearing reliability and life cycle duration. For understanding the flow conditions in the inner part of the bearing, this study focuses on the flow around the rotating and revolving rolling elements. A simple model of fluid flow inside the ball bearing is designed using the commercial CFD program ANSYS.

Vector Control of an Induction Motors for the Field Weakening Region With the Tuning of the Magnetizing Inductance (자화인덕턴스 추정을 이용한 약계자 영역에서의 유도전동기 벡터제어)

  • Choi, D.H.;Hyun, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.311-313
    • /
    • 1996
  • In case of field weakening region, the dynamic behavior of the speed controller depends on the rotor flux level. In this region, the flux is decreased inversely proportional to the rotor speed. As the rotor flux is decreased, as the magnetizing inductance is increased. In this paper, the effect of this increased magnetizing inductance to the performance of vector control is illustrated. The stationary reference frame torque not including the magnetizing inductance is calculated by stationary stator flux, and the rotating reference frame torque including the magnetizing inductance is calculated by rotating rotor flux. If the magnetizing inductance value is constant, two torque values are same regardless of the flux-component current. However, if the magnetizing inductance is varied, those two values are different. The paper presents the new tuning scheme of the magnetizing inductance using the difference between the stationary and rotating torque. Computer simulation demonstrates the efficacy of the proposed scheme.

  • PDF

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

The Study of the Design of a Hydraulic Torque Load Simulator Equipped with a Direct Drive Servo Valve and a Feed forward Compensator (직접 구동형 서보밸브와 전진 보상기를 적용한 유압식 토크 부하 시뮬레이터의 설계에 관한 연구)

  • Lee, Seong Rae
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • Hydraulic torque load simulator is essential to test and qualify the performance of various angle control systems. Typically a flapper-type second stage servovalve is applied to the load simulator, but here the direct drive servovalve, which is a kind of one-stage valve and affected by the large flow force, is applied. Since the torque load is applied not to the stationary shaft but to the rotating shaft of the angle control system, the controlled torque of load simulator is not accurate due to the rotating speed of the angle control system. A feedforward compensator is designed and applied to minimize the disturbance-like effect. A mathematical model is derived and linearized to analyze the stability, accuracy and responsiveness of the torque load simulator. The parameter effects of a controller, servovalve, hydraulic motor, rotating spring shaft are analyzed and summarized. The goodness of the linear analysis is verified by the digital computer simulations using both the linear and nonlinear mathematical models.

Linearity study for the field coil current and the load of eddy current dynamometer (Eddy current 동력계의 부하와 와전류의 직진성 관련 연구)

  • 문병수
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.66-72
    • /
    • 2000
  • Commercial eddy current dynamometers control the torque of ratating body (poer supply machine) with the field coil current being operated as a braking force. In this paper, we studied about the relation between the field coil current and the torque load of eddy current dynamometer. By the torque measuring analysis of eddy current dynamometer, it is linear relation between the brake force measured from the torque meter (e.g. load cell, strain gage or spring balance etc.) which is installed at the case of dynamometer and the multiply of shaft rpm by the square of field coil current (N$\times$Ia2). To prove the relation, it was experimented and showed that the torque operated by the rotating body can be measured with the shaft rpm and the field coil current of eddy current dynamometer. This result shows a possibility that eddy current dynamometer can measures the torque of rotating body without special torque measuring devices.

  • PDF

Experimental Study on the Performance Characteristics of Magnetic Fluid Seals for a High Vacuum System (고진공 자성유체시일의 성능 특성에 관한 실험적 연구)

  • 김청균;나윤환
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.105-111
    • /
    • 1997
  • This paper deals with an experimental study on the friction torque characteristics of magnetic fluid seals for various oil temperatures, rotating speeds, and vacuum pressures. The friction torque of MFS was measured by high response torque meter. The experimental results show that, as the rotating speed increases, the friction torque of MFS increases and as the oil temperature increases, the friction torque of MFS decreases. Also, the experimental results show that the friction torque of Model-II is 1.73~2.56, 2.0~2.89, 2.0~3.25 times higher than those of Model-I under the atmospheric pressure, vacuum pressure ($10^{-4} and 10^{-6}$ torr), respectively.