• Title/Summary/Keyword: Rope kite

Search Result 3, Processing Time 0.017 seconds

Performance of an Active Stimulating Device Using a Rope Kite or Array in the Cod End to Reduce Juvenile by-catch

  • Kim, Yong-Hae
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.2
    • /
    • pp.182-189
    • /
    • 2010
  • An active stimulating device (ASD) using a rope apparatus may operated by the flow of turbulence inside a cod end, generating variable stimuli in addition to flow-related effects to minimize the by-catch of juvenile fishes. Preliminary testing involved a hydrodynamic effect inside the cod end with a rotating rope kite or conical rope array to generate variable stimuli (visual stimuli, water flow, or physical contact with fish) to change fish position. The experimental rope kite offered more choice in rotating period and range of sweeping action; adjusting the towing line or flow velocity helped to drive fish toward the net panel and encouraged escape. The conical shape of the rope array in the cod end helped to clear a path for fish by disturbing the rigging and providing more contrast between objects, preventing an optomotor response. This enabled more black porgy to be herded toward the net at an early stage of towing. Therefore, either a conical rope array or a rotating rope kite can be used as an effective ASD to prevent juvenile by-catch.

The Development of Midwater Trawl Net in North Pacific Ocean (북태평양(北太平洋) 중층(中層)트롤그물의 발달(發達))

  • Kwon, Byeong-Guk;Chang, Ho-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.11-19
    • /
    • 1994
  • The North Pacific midwater trawling which is one of the important fishing methods for Korean fishing industry is working in the Bering Sea and the sea near Kamchaka Peninsula. The catch by Korean midwater trawlers had been recorded about 300 thousands $^{M/_T}$ a year. Six types of midwater trawl net-ordinary midwater trawl net, super-V trawl net, super mesh trawl net, rope trawl net, super plus trawl net and kite trawl net-have been widely used by large trawlers above 1,500gt in size since 1982. Regarding the fishing efficiency, the super plus trawl net and kite trawl net were acknowledged as higher than other nets. Maximum mesh size of super-plus trawl net and kite trawl net ranges about 20m, whereas the length of net about 150m, and high-tech polyethylene is used as the material of rope part. The problems involved in the North Pacific midwater trawl net may be summarized as follows ; (1) The dimension of fishing gear is too big compared with the towing power of trawler. (2) The mesh size of the rope part is too big compared with that of the common netting part. (3) The net is often torn out in the connecting position of the rope part and the netting part. (4) The net is not matched with the trawler and the otter board in many trawlers, so the shape of the trawl gear in the water is instable. (5) The fish school located near head rope, ground rope and side rope in the net recorder is not caught in practice because of the net instability.

  • PDF

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (III) - Opening Efficiency of the Model Net attaching the Kite - (무부자 쌍끌이 중층망 어구어법의 개발 (III) - 카이트를 부착한 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.197-210
    • /
    • 2003
  • The non-float midwater pair trawl was effective in the mouth opening and control of the working depth in midwater and bottom. In contrast, we confirmed that it was difficult to keep the net at surface above 30 m of the depth by means of the full scale experiment in the field and the model test in the circulation water channel. To solve this problem, the kites were attached to the head rope of the non-float midwater pair trawl. In this study, four kinds of the model experiments were carried out with the purpose of applying the kite to the korean midwater pair trawl. The results obtained can be summarized as follows: 1. The working depth of the non-float midwater pair trawl with the kite was shallower than that of the proto type and non-float type. The working depth of the kite type was approximately 20m with 2 kites and about 5m with 4 kites under 4.0 knot. The working depth was almost constant but the depth of the head rope sank approximately 15m and 10m according to the increase in the front weight and the wing-end weight, respectively. The changing aspect of the working depth was constant, but the depth of the head rope sank approximately 22m according to the increase in the lower warp length (dL). 2. The hydrodynamic resistance of the kite type was almost increased in a linear form in accordance with the flow speed increase from 2.0 to 5.0 knot. The increasing grate of the hydrodynamic resistance tended to increase in accordance with the increase in flow speed. The hydrodynamic resistance of the kite type was larger approximately 5~10 ton larger than that of the non-float type and the proto type. The hydrodynamic resistance of the kite type increased approximately 3ton with the changing of the front weight from 1.40 to 3.50 ton and approximately 4 ton with the changing of the wing-end weight from 0 to 1.11 ton and approximately 5.5 ton with the changing lower warp length (dL) from 0 to 40 m, respectively. 3. The net height of the kite type was increased approximately 10 m with the change in the kite area from $2,270mm^2$ to 4,540 $\textrm{mm}^2$. The net height of the kite type was aproximately 50 m and 30 m larger than that of the proto type and the non-float type, respectively. The changed aspect of the net width was approximately 5m with the variation of the flow speed from 2.0 to 5.0 knot. 4. The filtering volume of the kite type was larger than that of the proto type and the non-float type by 28%, 34% at 2.0 knot of the flow speed and 42%, 41% at 3.0 knot, and 62%, 45% at 4.0 knot, and 74%, 54% at 5.0knot, respectively. The optimal towing speed was approximately 3.0 knot for the proto type and was over 4.0 knot for the non-float type, and the optimal towing speed reached 5.0 knot for the kite type. 5. The opening efficiency of the kite type was approximately 50% and 25% larger than that of the proto type and the non-float type, respectively.