• Title/Summary/Keyword: Root zone

Search Result 470, Processing Time 0.039 seconds

Organic Matter Dynamics on Golf Course Greens (골프장 그린에서 토섬별 유기물의 경시적 변화)

  • Huh, Keun-Young;Ko, Byong-Gu
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • The management of soil organic matter(SOM) is a key component of golf course green maintenance. As part of a major project examining the sustainable management of SOM on golf course greens, the SOM status of different age greens maintained in the same root zone composition and management were compared. Then the microbial activity, tiller number, bulk density, water content, pH, EC, and T-N in the soil were measured. In the 0${\sim}$5cm depth SOM accumulation showed no significant difference between greens. Below 5cm SOM showed a strong significance between greens and had a positive(+) correlation with year and negative(-) correlation with depth. when regression equations were used to predict SOM accumulation with year and depth, SOM below 5cm tended to increase with a rate of 0.061% . year$^{-1}$ and decrease with a rate of 0.079% . $cm^{-1}$(R2==0.841). Soil microbial activity was investigated with age and depth by using a dehydrogenase assay. Results showed a sharp drop with depth in all greens. The soil microbial activity below 5cm showed no difference between greens. The accumulated SOM below 5cm may be very resistant to decomposition in the long-term. Five years after establishment, the bulk density did not significantly change. The water content, EC, and T-N had a significant correlation with SOM. The pH decreased with the year, which may influence SOM accumulation. Organic matter accumulation was mainly affected by the pH decrase,low soil microbial activity, and high organic matter resistant to decomposition, but the effects of water content, EC, and T-N were obscure.

Optimization of Growth Environment in the Enclosed Plant Production System Using Photosynthesis Efficiency Model (광합성효율 모델을 이용한 밀폐형 식물 생산시스템의 재배환경 최적화)

  • Kim Keesung;Kim Moon Ki;Nam Sang Woon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.209-216
    • /
    • 2004
  • This study was aimed to assess the effects of microclimate factors on lettuce chlorophyll fluorescent responses and to develop an environment control system for plant growth by adopting a simple genetic algorithm. The photosynthetic responses measurements were repeated by changing one factor among six climatic factors at a time. The maximum Fv'/Fm' resulted when the ambient temperature was $21^{\circ}C,\;CO_2$ concentration range of 1,200 to 1,400 ppm, relative humidity of $68\%$, air current speed of $1.4m{\cdot}s^{-1}$, and the temperature of nutrient solution of $20^{\circ}C$. In PPF greater than $140{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, Fv'/Fm' values were decreased. To estimate the effects of combined microclimate factors on plant growth, a photosynthesis efficiency model was developed using principle component analysis for six microclimate factors. Predicted Fv'/Fm' values showed a good agreement to measured ones with an average error of $2.5\%$. In this study, a simple genetic algorithm was applied to the photosynthesis efficiency model for optimal environmental condition for lettuce growth. Air emperature of $22^{\circ}C$, root zone temperature of $19^{\circ}C,\;CO_2$ concentration of 1,400 ppm, air current speed of $1.0m{\cdot}s^{-1}$, PPF of $430{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and relative humidity of $65\%$ were obtained. It is feasible to control plant environment optimally in response to microclimate changes by using photosynthesis efficiency model combined with genetic algorithm.

Development of Stable Production Technique of Summer Spinach (Spinacia oleracea L.) in Soilless Culture in the Highlands (수경재배에 의한 고랭지 시금치의 여름철 안정생산 기술 개발)

  • Lee, Eung-Ho;Lee, Jong-Nam;Im, Ju-Sung;Ryu, Seung-Yeol;Kwon, Young-Seok;Jang, Suk-Woo
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.21-26
    • /
    • 2011
  • Differences among cultivars, conditions of nutrient solution, nursing materials, and soilless culture systems were investigated to select suitable cultivar and cultivation methods for stable production of summer spinach in the highlands. The 'Quinto' spinach showed the earliest growth and highest yield. For yield increase of summer spinach, optimal solution pH was 6.0, EC was $2.0dS{\cdot}m^{-1}$, and $NH_4-N$ ratio of nutrient solution was 30 percent Stand rate of spinach in nursing seedlings, at 200-cell-tray filled with mixed nursing soil (peat : perlite = 7 : 3), was higher than those grown in urethane sponge and rock-wool plug. Yield was also 18 to 24 percent higher than those in rock-wool plug and urethane sponge. Plant length and yield of spinach in mixed substrate (peat : perlite = 7 : 3) filled nutrient film technique (MSNFT) system were longer of 18 percent, and higher of 9 percent than those in deep flow technique (DFT) system, respectively. However, changes of root zone temperature, pH and EC showed similar pattern with DFT. Therefore, growing 'Quinto' cultivar at 6.0 of pH, $2.0dS{\cdot}m^{-1}$ of EC, 30 percent of $NH_4-N$ ratio, at 200-cell-tray filled with mixed nursing soil, and MSNFT cultivation system, was the best for production of summer spinach in the highlands.

Soil Physicochemical Properties by applied with Mixed Ratio Soldier Fly (Hermetia illucens) Casts (동애등애 분변토의 혼합비율에 따른 토양이화학적 특성)

  • Kim, Young-Sun;Lee, Sang-Beom;Ham, Suon-Kyu;Lim, Hye-Jung;Cboe, Young-Cheol
    • Asian Journal of Turfgrass Science
    • /
    • v.25 no.1
    • /
    • pp.106-111
    • /
    • 2011
  • This study was conducted to investigate the effect of the mixture ratio of a soldier fly casts (SFC), compost and cocopeat on the soil physicochemical properties. The mixture ratios of soil amendment were 0%, 3%, 5%, 7% and 10% (V/V) incorporated with sand which met to the USGA particle standard. To analyze the effects of amendments on soil chemical properties, pH and EC were measured. The porosity, capillary porosity, air-filled porosity, bulk density and hydraulic conductivity also measured to analyze the physical properties. Chemical properties were significantly different by mixture ratios of a SFC, compost and cocopeat. Capillary porosity was a factor involved in soil physical properties by blending with a SFC and compost. It was affected on the volume of porosity or hydraulic conductivity. To analyze the correlation of mixture ratio versus to physical characters, the ratios of SFC were significantly different in capillary porosity, air-filled porosity, and hydraulic conductivity. These results indicated that mixing ratios of SFC were affected on soil physicochemical properties such as porosity and hydraulic conductivity of the root zone on the USGA sand green.

CFD Analysis on the Effect of the Nozzle Arrays and Spray Types in the Hydrogen Peroxide Mixing Quencher to Improve the Mixing Efficiency (과산화수소 혼합냉각기 내의 노즐배치 및 가스분사 방식 변화에 따른 혼합율 개선에 대한 전산해석적 연구)

  • Koo, Seongmo;Chang, Hyuksang
    • Clean Technology
    • /
    • v.23 no.1
    • /
    • pp.42-53
    • /
    • 2017
  • Numerical analysis was done to evaluate the fluid distribution inside of the mixing quencher to increase the reaction efficiency of the aqueous hydrogen peroxide solution in the scrubbing column which is used for simultaneous desulfurization and denitrification. Effective injection of the aqueous hydrogen peroxide ($H_2O_2$) solution in the mixing quencher has major effects for improving the reaction efficiency in the scrubbing column by enhancing the mixing of the aqueous $H_2O_2$ solution with the exhaust gas. The current study is to optimize the array of nozzles and the spray angles of the aqueous $H_2O_2$ solution in the mixing quencher by using the computational method. Main concerns of the analysis are how to enhance the uniformity of the $H_2O_2$ concentration distribution in the internal flow. Numerical analysis was done to check the distribution of the internal flow in the mixing quencher in terms of RMS values of the $H_2O_2$ concentration at the end of quencher. The concentration distribution of $H_2O_2$ at the end of is evaluated with respect to the different array of the nozzle pipes and the nozzle tip angles, and we also analyzed the turbulence formation and fluid mixing in the zone. The effect of the spray angle was evaluated with respect to the mixing efficiency in different flow directions. The optimized mixing quencher had the nozzle array at location of 0.3 m from the inlet duct surface and the spray angle is $15^{\circ}$ with the co-current flow. The RMS value of the $H_2O_2$ concentration at the end of the mixing quencher was 12.4%.

Immediate implant placement into extraction sites with periapical lesions in the esthetic zone: a case report (치근단 병소를 가진 치아의 발치 후 즉시 임플란트 식립 및 보철을 통한 심미성 회복)

  • Yi, Jae-Young;Kim, Jee-Hwan;Han, Dong-Hoo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • Esthetics is important in restoring maxillary anterior area. Alveolar bone resorption and loss of interdental papilla may be minimized by immediate implantation. Previous studies showed successful results with the immediate implantation in healthy extraction socket, while many of these studies objected the immediate implantation into extraction sites with periapical lesions. Recent studies, however, reported successful results of the immediate implantation into extraction sites with periapical lesions with careful debridement of extraction sockets and general medication of antibiotics prior to implantation. A 73-year-old female visited the department of Prosthodontics in ${\bigcirc}{\bigcirc}$ University Dental Hospital with the chief complaint of fallen post-core and crown on left maxillary incisor. Although the incisor was with vertical root fracture and periapical lesion, the immediate implantation following the extraction of tooth was planned. Thorough socket debridement, irrigation with chlorhexidine, and tetracycline soaking were followed by immediate implantation. The general medication of antibiotics (Moxicle Tab.$^{(R)}$, 375 mg) was prescribed before and after the surgery. Immediate provisional restoration was delivered two days after the surgery, and the definitive metal-ceramic restoration was placed about six months later after reproducing the emergence profile from the provisional restoration. This case presents satisfying result esthetically and functionally upto two years after the placement of prosthesis with the harmonious gingival line and no loss of marginal bone.

Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis

  • Khaleda, Laila;Park, Hee Jin;Yun, Dae-Jin;Jeon, Jong-Rok;Kim, Min Gab;Cha, Joon-Yung;Kim, Woe-Yeon
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.966-975
    • /
    • 2017
  • Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY $K^+$ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of $Na^+$ in roots up to the elongation zone and caused the reabsorption of $Na^+$ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

Development of Temperature Control Technology of Root Zone using Multi-line Heating Methods in the Strawberry Hydroponics (다선식 가온방식을 이용한 딸기 수경재배의 배지 온도조절 기술 개발)

  • Kim, Ki-Dong;Ha, Yu-Shin;Lee, Ki-Myung;Park, Dae-Heum;Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.189-194
    • /
    • 2010
  • A multi line electric tube consisted of XL pipes contained with 2~4 hot wires and water in it. The specification of one meter length multi-line electric tube was investigated and the proper number in the multi-line electric tube was determined. A multi line electric tube with three hot wires were found to be the most efficient for the media heating control system. Temperature rise of medium in the rice hulls media was faster than that in the perlite media, showed better insulation effect of rice hulls media. Temperature rise of medium with mulching on the top of the bed was faster than without mulching, resulted in the beneficial effect of temperature rise with mulching. The regression model for the rice hulls media with mulching air temperature of $5^{\circ}C$ were a = -0.1458 and b = -0.1088. Using the model, the temperature rise of medium during low temperature season can be predicted for the various media according to the different depths.

Outlier Detection and Treatment for the Conversion of Chemical Oxygen Demand to Total Organic Carbon (화학적산소요구량의 총유기탄소 변환을 위한 이상자료의 탐지와 처리)

  • Cho, Beom Jun;Cho, Hong Yeon;Kim, Sung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.4
    • /
    • pp.207-216
    • /
    • 2014
  • Total organic carbon (TOC) is an important indicator used as an direct biological index in the research field of the marine carbon cycle. It is possible to produce the sufficient TOC estimation data by using the Chemical Oxygen Demand(COD) data because the available TOC data is relatively poor than the COD data. The outlier detection and treatment (removal) should be carried out reasonably and objectively because the equation for a COD-TOC conversion is directly affected the TOC estimation. In this study, it aims to suggest the optimal regression model using the available salinity, COD, and TOC data observed in the Korean coastal zone. The optimal regression model is selected by the comparison and analysis on the changes of data numbers before and after removal, variation coefficients and root mean square (RMS) error of the diverse detection methods of the outlier and influential observations. According to research result, it is shown that a diagnostic case combining SIQR (Semi - Inter-Quartile Range) boxplot and Cook's distance method is most suitable for the outlier detection. The optimal regression function is estimated as the TOC(mg/L) = $0.44{\cdot}COD(mg/L)+1.53$, then determination coefficient is showed a value of 0.47 and RMS error is 0.85 mg/L. The RMS error and the variation coefficients of the leverage values are greatly reduced to the 31% and 80% of the value before the outlier removal condition. The method suggested in this study can provide more appropriate regression curve because the excessive impacts of the outlier frequently included in the COD and TOC monitoring data is removed.

Epigenetic control of LTR retrotransposons in plant germline and somatic cells

  • Lee, Seung Cho;Parent, Jean-Sebastien;Ernst, Evan;Berger, Frederic;Grimanelli, Daniel;Martienssen, Robert A.
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.20-20
    • /
    • 2017
  • Plant genomes include heterochromatic loci that consist of repetitive sequences and transposable elements. LTR retrotransposon is the major class of transposons in advanced plants in terms of proportion in plant genome. The elements contribute not only to genome size but also to genome stability and gene expression. A number of cases have been reported transposon insertions near genic regions affect crop traits such as fruit pigments, stress tolerance, and yields. Functional LTR retrotransposons produce extrachromosomal DNA from genomic RNA by reverse transcription that takes place within virus-like-particles (VLPs). DECREASED DNA METHYLATION 1 (DDM1) plays important roles in maintaining DNA methylation of heterochromatin affecting all sequence contexts, CG, CHG, and CHH. Previous studies showed that ddm1 mutant exhibits massive transcription of retrotransposons in Arabidopsis, but only few of them were able to create new insertions into the genome. RNA-dependent RNA POLYMERASE 6 (RDR6) is known to function in restricting accumulation of transposon RNA by processing the transcripts into 21-22 nt epigenetically activated small interfering RNA (easiRNA). We purified VLPs and sequence cDNA to identify functional LTR retrotransposons in Arabidopsis ddm1 and ddm1rdr6 plants. Over 20 LTR copia and gypsy families were detected in ddm1 and ddm1rdr6 sequencing libraries and most of them were not reported for mobility. In ddm1rdr6, short fragments of ATHILA gypsy elements were detected. It suggests easiRNAs might regulate reverse transcription steps. The highest enriched element among transposon loci was previously characterized EVADE element. It has been reported that active EVADE element is more efficiently silenced through female germline than male germline. By genetic analyses, we found ddm1 and rdr6 mutation affect maternal silencing of active EVADE elements. DDM1-GFP protein accumulated in megaspore mother cell but was not found in mature egg cell. The fusion protein was also found in early embryo and maternal DDM1-GFP allele was more dominantly expressed in the embryo. We observed localization of DDM1-GFP in Arabidopsis and DDM1-YFP in maize and found the proteins accumulated in dividing zone of root tips. Currently we are looking at cell cycle dependency of DDM1 expression using maize system. Among 10 AGO proteins in Arabidopsis, AGO9 is specifically expressed in egg cell and shoot meristematic cells. In addition, mutation of AGO9 and RDR6 caused failure in maternal silencing, implying 21-22 nt easiRNA pathway is important for retrotransposon silencing in female gametophyte or/and early embryo. On the other hand, canonical 24 nt sRNA-directed DNA methylation (RdDM) pathways did not contribute to maternal silencing as confirmed by this study. Heat-activated LTR retrotransposon, ONSEN, was not silenced by DDM1 but the silencing mechanisms require RdDM pathways in somatic cells. We will propose distinct mechanisms of LTR retrotransposons in germline and somatic stages.

  • PDF