DOI QR코드

DOI QR Code

Humic Acid Confers HIGH-AFFINITY K+ TRANSPORTER 1-Mediated Salinity Stress Tolerance in Arabidopsis

  • Khaleda, Laila (Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University) ;
  • Park, Hee Jin (Institute of Glocal Disease Control, Konkuk University) ;
  • Yun, Dae-Jin (Department of Biomedical Science and Engineering, Konkuk University) ;
  • Jeon, Jong-Rok (Department of Agriculture Chemistry and Food Science & Technology, Institute of Agriculture and Life Science (IALS), Gyeongsang National University) ;
  • Kim, Min Gab (College of Pharmacy and Research Institute of Pharmaceutical Science, PMBBRC, Gyeongsang National University) ;
  • Cha, Joon-Yung (Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University) ;
  • Kim, Woe-Yeon (Division of Applied Life Science (BK21Plus), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Life Sciences (RILS), Gyeongsang National University)
  • Received : 2017.09.25
  • Accepted : 2017.11.05
  • Published : 2017.12.31

Abstract

Excessive salt disrupts intracellular ion homeostasis and inhibits plant growth, which poses a serious threat to global food security. Plants have adapted various strategies to survive in unfavorable saline soil conditions. Here, we show that humic acid (HA) is a good soil amendment that can be used to help overcome salinity stress because it markedly reduces the adverse effects of salinity on Arabidopsis thaliana seedlings. To identify the molecular mechanisms of HA-induced salt stress tolerance in Arabidopsis, we examined possible roles of a sodium influx transporter HIGH-AFFINITY $K^+$ TRANSPORTER 1 (HKT1). Salt-induced root growth inhibition in HKT1 overexpressor transgenic plants (HKT1-OX) was rescued by application of HA, but not in wild-type and other plants. Moreover, salt-induced degradation of HKT1 protein was blocked by HA treatment. In addition, the application of HA to HKT1-OX seedlings led to increased distribution of $Na^+$ in roots up to the elongation zone and caused the reabsorption of $Na^+$ by xylem and parenchyma cells. Both the influx of the secondary messenger calcium and its cytosolic release appear to function in the destabilization of HKT1 protein under salt stress. Taken together, these results suggest that HA could be applied to the field to enhance plant growth and salt stress tolerance via post-transcriptional control of the HKT1 transporter gene under saline conditions.

Keywords

References

  1. Ali, Z., Park, H.C., Ali, A., Oh, D.H., Aman, R., Kropornicka, A., Hong, H., Choi, W., Chung, W.S., Kim, W.Y., et al. (2012). TsHKT1;2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows $K^{+}$ specificity in the presence of NaCl. Plant Physiol. 158, 1463-1474. https://doi.org/10.1104/pp.111.193110
  2. Apse, M.P., Aharon, G.S., Snedden, W.A., and Blumwald, E. (1999). Salt tolerance conferred by overexpression of a vacuolar $Na^{+}$/$H^{+}$ antiport in Arabidopsis. Science 285, 1256-1258. https://doi.org/10.1126/science.285.5431.1256
  3. Arancon, N.Q.C., Edwards, A., Lee, S., and Byrne, R. (2006). Effects of humic acids from vermin composts on plant growth. Euro. J. Soil Biol. 42, 65-69. https://doi.org/10.1016/j.ejsobi.2005.08.003
  4. Ashraf, M., and Foolad, M.A. (2007). Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycine, betaine and proline. Environ. Exp. Bot. 59, 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006
  5. Asik, B.B., Turan, M.A., Celik, H., and Katkat, A.V. (2009). Effects of humic substances on plant growth and mineral nutrients uptake of wheat (Triticum durum cv. Salihli) under conditions of salinity. Asian J. Crop Sci. 1, 87-95. https://doi.org/10.3923/ajcs.2009.87.95
  6. Aydin, A., Kant, C., and Turan, M., (2012). Humic acid application alleviates salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. Afr. J. Agric. Res. 7, 1073-1086.
  7. Berthomieu, P., Conejero, G., Nublat, A., Brackenbury, W.J., Lambert, C., Uozumi, N., Oiki, S., Yamada, K., Cellier, F., Gosti, F., et al. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that $Na^{+}$ recirculation by the phloem is crucial for salt tolerance. EMBO J. 22, 2004-2014. https://doi.org/10.1093/emboj/cdg207
  8. Blanchet, R.M. (1958). The direct and indirect effect of humified, organic matter on the nutrition of vascular plants. Annales agronomiques 9, 499-532.
  9. Blumwald, E. (2000). Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol. 12, 431-434. https://doi.org/10.1016/S0955-0674(00)00112-5
  10. Busch, D.S. (1995). Calcium regulation in plant cell and its role in signaling. Ann. Rev. Plant Physiol. Mol. Biol. 46, 95-122.
  11. Cacco, G., and Dell Agnolla, G. (1984). Plant growth regulator activity of soluble humic substances. Can. J. Soil Sci. 64, 25-28.
  12. Canellas, L.P., Olivares, F.L., Okorokova-Façanha, A.L., and Façanha, A.R. (2002). Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence and plasma membrane $H^{+}$-ATPase activity in maize roots. Plant Physiol. 130, 1951-1957. https://doi.org/10.1104/pp.007088
  13. Carletti, P., Masi, A., Spolaore, B., Polverino De Laureto, P., and De Zorzi, M. (2008). Protein expression changes in maize roots in response to humic substances. J. Chem. Ecol. 34, 804-18. https://doi.org/10.1007/s10886-008-9477-4
  14. Cha, J.Y., Kim, T.W., Choi, J.H., Jang, K.S., Khaleda, L., Kim, W.Y., and Jeon, J.R. (2017) Fungal laccase-catalyzed oxidation of naturally occurring phenols for enhanced germination and salt tolerance of Arabidopsis thaliana: A green route for synthesizing humic-like fertilizers. J. Agric. Food Chem. 65, 1167-1177. https://doi.org/10.1021/acs.jafc.6b04700
  15. Davenport, R.J., Munoz-Mayor, A., Jha, D., Essah, P.A., Rus, A., and Tester, M. (2007). The $Na^{+}$ transporter AtHKT1;1 controls retrieval of $Na^{+}$ from the xylem in Arabidopsis. Plant Cell Environ. 30, 497-507. https://doi.org/10.1111/j.1365-3040.2007.01637.x
  16. David, P.P., Nelson, P.V., and Sanders, D.C. (1994). A Humic acid improves growth of tomato seedling in solution culture. J. Plant Nut. 17, 173-184. https://doi.org/10.1080/01904169409364717
  17. Dobbss, L.B., Medici, L.O., Peres, L.E.P., Pino-Nunes, L.E., Rumjianek, V.M., Facanha, A.R. and Canellas, L.P. (2007). Changes in root development of Arabidopsis promoted by organic matter from oxisols. Ann. Appl. Biol. 151, 199-211. https://doi.org/10.1111/j.1744-7348.2007.00166.x
  18. Dodd, A.N., Gardner, M.J., Hotta, C.T., Hubbard, K.E., Dalchau, N., Love, J., Assie, J.M., Robertson, F.C., Jakobsen, M.K., Goncalves J., et al., (2007). The Arabidopsis circadian clock incorporates a cADPRbased feedback loop. Science 318(5857), 1789-1792. https://doi.org/10.1126/science.1146757
  19. Glenn, E.P., Brown, J.J., and Blumwald, E. (1999). Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 18, 227-255. https://doi.org/10.1080/07352689991309207
  20. Gorham, J., Hardy, C., Wyn Jones, R.G., Joppa L.R., and Law, C.N. (1987). Chromosomal location of a K/Na discrimination character in the D genome of wheat. Theor. Appl. Gen. 74, 584-588. https://doi.org/10.1007/BF00288856
  21. Gorham, J., Wyn Jones, R.G., and Bristol, A. (1990). Partial characterization of the trait for enhanced $K^{+}$-$Na^{+}$ discrimination in the D genome of wheat. Planta 180, 590-597. https://doi.org/10.1007/BF02411458
  22. Guminski, S. (1968). Present-day views on physiological effects induced in plant organism by humic compounds. Sov. Soil Sci. 9, 1250-1256.
  23. Guo, Y., Halfter, U., Ishitani, M., and Zhu, J.K. (2001). Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13, 1383-1400. https://doi.org/10.1105/tpc.13.6.1383
  24. Guo, Y., Qiu, Q.S., Quintero, F.J., Pardo, J.M., Ohta, M., Zhang, C., Schumaker, K.S. and Zhu, J.K. (2004). Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16, 435-449. https://doi.org/10.1105/tpc.019174
  25. Halfter, U., Ishitani M., and Zhu, J.K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97, 3735-3740. https://doi.org/10.1073/pnas.97.7.3735
  26. Hauser, F., and Horie, T. (2010). A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high $K^{+}$/$Na^{+}$ ratio in leaves during salinity stress. Plant Cell Environ. 33, 552-565. https://doi.org/10.1111/j.1365-3040.2009.02056.x
  27. Horie, T., Yoshida, K., Nakayama, H., Yamada, K., Oiki, S., and Shinmyo, A. (2001). Two types of HKT transporters with different properties of $Na^{+}$ and $K^{+}$ transport in Oryza sativa. Plant J. 27, 129-138. https://doi.org/10.1046/j.1365-313x.2001.01077.x
  28. Horie, T., Horie R., Chan, W.Y., Leung, H.Y., and Schroeder, J.I. (2006). Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. Plant Cell Physiol. 47, 622-633. https://doi.org/10.1093/pcp/pcj029
  29. Horie, T., Karahara, I., and Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice 5:11. https://doi.org/10.1186/1939-8433-5-11
  30. Ishitani, M., Liu, J., Halfter, U., Kim, C.S., Shi, W., and Zhu, J.K. (2000). SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12, 1667-1678. https://doi.org/10.1105/tpc.12.9.1667
  31. Kamboj, A., Ziemann, M., and Bhave, M. (2015). Identification of salt-tolerant barley varieties by a consolidated physiological and molecular approach. Acta. Physiol. Plant. 37:1716. https://doi.org/10.1007/s11738-014-1716-4
  32. Khaled, H., and Fawy, H.A. (2011). Effect of different levels of humic acids on the nutrient content, plant growth, and soil properties under conditions of salinity. Soil Water Res. 6, 21-29. https://doi.org/10.17221/4/2010-SWR
  33. Kim, W.Y., Ali, Z., Park, H.J., Park, S.J., Cha, J.Y., Perez-Hormaeche, J., Quintero, F.J., Shin G., Kim, M.R., Qiang, Z., et al. (2013). Release of SOS2 kinase from sequestration with GIGANTEA determines salt tolerance in Arabidopsis. Nat. Commun. 4, 1352. https://doi.org/10.1038/ncomms2357
  34. Kwon, T.R., S.Z. Siddiqui, S.Z., and Harris, P.J.C. (2009). Effects of supplemental calcium on ion accumulation, transport and plant growth of salt sensitive Brassica rapa L. andrace. J. Plant Nutr. 32, 644-667. https://doi.org/10.1080/01904160802715455
  35. Lacan, D., and Durand, M. (1996). $Na^{+}$-$K^{+}$ exchange at the xylem/symplast boundary: Its significance in the salt sensitivity of soybean. Plant Physiol. 110, 705-711. https://doi.org/10.1104/pp.110.2.705
  36. Lauchi, A. (1984). Salt exclusion: an adaptation of legume for crops and pastures under saline condition. In Salinity tolerance in plants strategies for crop improvement, R.C. Stoples and G.H. Toenniessen, eds. (John Willey and Sons, NY), pp. 171-187.
  37. Lauchi, A. (1990). Calcium, salinity and the plasma membrane. Amer. Soc. Plant Physiol. Symp. Series, 4, 26-35.
  38. Leshem, Y., Melamed-Book, N., Cagnac, O., Ronen, G., Nishri, Y., Solomon, M., Cohen, G., and Levine, A. (2006). Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of $H_2O_2$-containing vesicles with tonoplast and increased salt tolerance. Proc. Natl. Acad. Sci. USA 103, 18008-18013. https://doi.org/10.1073/pnas.0604421103
  39. Liu, J., and Zhu, J.K. (1998). A calcium sensor homolog required for plant salt tolerance. Science 280, 1943-1945. https://doi.org/10.1126/science.280.5371.1943
  40. Liu, J., Ishitani, M., Halfter, U., Kim, C.S., and Zhu, J.K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 97, 3730-3734. https://doi.org/10.1073/pnas.97.7.3730
  41. Julkowska, M.M., Hoefsloot, H.C.J., Mol, S., Feron, R., de Boer, G.J., Haring, M.A., and Testerink, C. (2014). Capturing Arabidopsis root architecture dynamics with ROOT-FIT reveals diversity in responses to salinity. Plant Physiol. 166, 1387-1402. https://doi.org/10.1104/pp.114.248963
  42. Marketa, J., Borivoj, K., Jozef, K., Petr, B., and Josef, S. (2016). Humic acid protects barley against salinity. Acta. Physiol. Plant. 38, 161. https://doi.org/10.1007/s11738-016-2181-z
  43. Masciandaro, G., Ceccanti, B., Ronchi, V., Benedicto, S., and Howard, L. (2002). Humic substances to reduce salt effect on plant germination and growth. Comm. Soil Sci. Plant Anal. 33, 365-378. https://doi.org/10.1081/CSS-120002751
  44. Maser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D.J., Kubo, M., Yamagami, M., Yamaguchi, K., Nishimura, M., Uozumi, N., et al. (2002a). Altered shoot/root $Na^{+}$ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the $Na^{+}$ transporter AtHKT1. FEBS Lett. 531, 157-161. https://doi.org/10.1016/S0014-5793(02)03488-9
  45. Maser, P., Hosoo, Y., Goshima, S., Horie, T., Eckelman, B., Yamada, K., Yoshida, K., Bakker, E.P., Shinmyo, A., Oiki, S., et al. (2002b). Glycine residues in potassium channel-like selectivity filters determine potassium selectivity in four-loop-per-subunit HKT transporters from plants. Proc. Natl. Acad. Sci. USA 99, 6428-6433. https://doi.org/10.1073/pnas.082123799
  46. Mazel, A., Leshem, Y., Tiwari, B.S. and Levine, A. (2004). Induction of salt and osmotic stress tolerance by overexpression of an intracellular vesicle trafficking protein AtRab7 (AtRabG3e). Plant Physiol. 134, 118-128. https://doi.org/10.1104/pp.103.025379
  47. Meier S.D., Kovalchuk, Y., and Rose, C.R. (2006). Properties of the new fluorescent $Na^{+}$ indicator CoroNa Green: comparison with SBFI and confocal $Na^{+}$ imaging. J. Neurosci. Methods 155, 251-259. https://doi.org/10.1016/j.jneumeth.2006.01.009
  48. Moller I.S., and Tester, M. (2007). Salinity tolerance of Arabidopsis: A good model for cereals? Trends Plant Sci. 12, 534-540. https://doi.org/10.1016/j.tplants.2007.09.009
  49. Moller, I.S., Gilliham, M., Jha, D., Mayo, G.M., Roy, S,J., Coates, J.C., Haseloff, J., and Tester, M. (2009). Shoot $Na^{+}$ exclusion and increased salinity tolerance engineered by cell type-specific alteration of $Na^{+}$ transport in Arabidopsis. Plant Cell 21, 2163-2178. https://doi.org/10.1105/tpc.108.064568
  50. Moncrief, N.D., Kretsinger, R.H., and Goodman, M. (1990). Evolution of EF-hand calcium-modulated proteins. I. Relationships based on amino acid sequences. J. Mol. Evol. 30, 522-562. https://doi.org/10.1007/BF02101108
  51. Munns, R. (1993). Physiological processes limiting plant growth in saline soils: Some dogmas and hypotheses. Plant Cell Environ. 16, 15-24. https://doi.org/10.1111/j.1365-3040.1993.tb00840.x
  52. Munns, R. (2002). Comparative physiology of salt and water stress, plant. Cell Environ. 25, 239-250. https://doi.org/10.1046/j.0016-8025.2001.00808.x
  53. Munns, R., and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
  54. Murat, A.T., B.A. Baris, B.A, Ali, V.K.. and. Hakan, E. (2011). The effects of soil-applied humic substances to the dry weight and mineral nutrient uptake of maize plants under soil salinity conditions. Not. Bot. Hort. Agrobot. Cluj. 39(1), 171-177. https://doi.org/10.15835/nbha3915812
  55. Murguia J.R., Belles, J.M., and Serrano, R. (1995). A salt-sensitive 3′A2A salt-sensitive 39nucleotidase involved in sulfate activation. Science 267, 232-234. https://doi.org/10.1126/science.7809627
  56. Nardi, S., Pizzeghello, D., Muscolo, A., and Vianello, A. (2002). Physiological effects of humic substances on higher plant. Soil Biol. Biochem. 34, 1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8
  57. Oh, D.H., Lee, S.Y., Bressan, R.A., Yun, D.J., and Bohnert, H.J. (2010). Intracellular consequences of SOS1 deficiency during salt stres. J. Exp. Bot. 61(4), 1206-1213.
  58. Orsi, M. (2014). Molecular dynamics simulation of humic substances. Chem. Biol. Technol. Agr. 1,10. https://doi.org/10.1186/s40538-014-0010-4
  59. Pardo, J.M., Cubero, B., Leidi, E.O.. and Quintero, F.J. (2006). Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot. 57, 1181-1199. https://doi.org/10.1093/jxb/erj114
  60. Park, H.J., Kim, W.Y., Yun, D.-J. (2016) A new insight of salt stress signaling in plant. Mol. Cells 39(6), 447-459. https://doi.org/10.14348/molcells.2016.0083
  61. Piccolo, A., Nardi, S.. and Concheri, G. (1992). Structural characteristics of humic substance as related to nitrate uptake and growth regulation in plant systems. Soil Biol. Biochem. 24, 373-380. https://doi.org/10.1016/0038-0717(92)90197-6
  62. Pilanal, N., and Kaplan, M. (2003). Investigation of effect on nutrient uptake of humic acid applications of different forms to strawberry plant. J. Plant Nutri. 26, 835-843. https://doi.org/10.1081/PLN-120018568
  63. Qiu, Q.S., Guo, Y., Dietrich, M.A., Schumaker, K.S., and Zhu, J.K. (2002). Regulation of SOS1, a plasma membrane $Na^{+}$/$H^{+}$ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99, 8436-8441. https://doi.org/10.1073/pnas.122224699
  64. Qiu, Q.S., Guo, Y., Quintero, F.J., Pardo, J.M., Schumaker, K.S., and Zhu, J.K. (2004). Regulation of vacuolar $Na^{+}$/$H^{+}$ exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J. Biol. Chem. 279, 207-215. https://doi.org/10.1074/jbc.M307982200
  65. Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., and Nardi, S. (2004). Effect of low molecular size humic substances on the expression of genes involved in nitrate transport and reduction in maize (Zea mays L.). J. Exp. Bot. 55, 803-813. https://doi.org/10.1093/jxb/erh085
  66. Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, .Z.Y., Luan, S., and Lin, H.X. (2005). A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat. Genet. 37, 1141-1146. https://doi.org/10.1038/ng1643
  67. Rubio, F., Gassmann, W., and Schroeder, J.I. (1995). Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270, 1660-1663. https://doi.org/10.1126/science.270.5242.1660
  68. Russo, R.O., and Berlyn, G.P. (1990). The use of organic bio stimulants to help low input sustainable agriculture. J. Sust. Agric. 1, 19-42.
  69. Sangeetha, M., Singaram, P., and Devi, R.D. (2006). Effect of lignite humic acid and fertilizers on the yield of onion and nutrient availability. Proc. 18th World Cong. Soil Sci. July 9-15, Philadelphia, Pennsylvania, USA.
  70. Selim, E.M., Mosa, A.A., and El-Ghamry, A.M. (2009). Evaluation of humic substances fertigation through surface and subsurface drip irrigation systems on potato grown under Egyptian sandy soil conditions. Agr. Water Manage. 96, 1218-1222. https://doi.org/10.1016/j.agwat.2009.03.018
  71. Serenella, N., Pizzeghelloa, D., Muscolob, A., and Vianello, A. (2002). Physiological effects of humic substances on higher plants. Soil Biol. Biochem. 34, 1527-1536. https://doi.org/10.1016/S0038-0717(02)00174-8
  72. Sunarpi, H.T., Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.Y., Leung, H.Y., Hattori, K., Konomi, M., Osumi, M., et al. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced $Na^{+}$ unloading from xylem vessels to xylem parenchyma cells. Plant J. 44, 928-938. https://doi.org/10.1111/j.1365-313X.2005.02595.x
  73. Tan, K.H. (2003). Humic matter in soil and the environment. Marcel Dekker, New York.
  74. Tester, M., and Davenport, R. (2003). $Na^{+}$ tolerance and $N^+$ transport in higher plants. Ann. Bot. 91, 503-527. https://doi.org/10.1093/aob/mcg058
  75. Tracy, F.E., Gilliham, M., Dodd, A.N., Webb, A.A., and Tester, M. (2008). NaCl-induced changes in cytosolic free $Ca^{2+}$ in Arabidopsis thaliana are heterogenous and modified by external ionic composition. Plant Cell Environ. 31(8), 1063-1073. https://doi.org/10.1111/j.1365-3040.2008.01817.x
  76. Trevisan, S., Pizzeghello, D., Ruperti, B., Francioso, O., Sassi, A., Palme, K., Quaggiotti, S., and Nardi, S. (2010). Humic substances induce lateral root formation and expression of the early auxin responsive IAA19 gene and DR5 synthetic element in Arabidopsis. Plant Biol. 12, 604-614.
  77. Turkmen, O., Dursun, A., Turan, M., and Erdinc, C. (2004). Calcium and humic acid affect seed germination, growth and nutrient content of tomato (Lycopersicon esculentum L.) seedlings under saline soil conditions. Acta Agric. Scand. Sect. B, Taylor, Francis. Soil Plant Sci. 54, 168-174.
  78. Tunstall, B.R. (2005). Dryland salinity implications of interactions between clay, organic matter, salt and water in soils. On www.eric.com.au.
  79. Uozumi, N., Kim, E.J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., Bakker, E.P., Nakamura, T., and Schroeder, J.I. (2000). The Arabidopsis HKT1 gene homolog mediates inward $Na^{+}$ currents in Xenopus laevis oocytes and $Na^{+}$ uptake in Saccharomyces cerevisiae. Plant Physiol. 122, 1249-1259. https://doi.org/10.1104/pp.122.4.1249
  80. Vaughan, D. (1974). Possible mechanism for humic acid action on cell elongation in root segments of Pisum sativum under aseptic conditions. Soil Biol. Biochem. 6, 241-247. https://doi.org/10.1016/0038-0717(74)90058-3
  81. Wang, S., and Mulligan, C.N. (2009). Enhanced mobilization of arsenic and heavy metals from mine tailings by humic acid. Chemosphere 74, 274-279. https://doi.org/10.1016/j.chemosphere.2008.09.040
  82. Wu, Y.V., Rosati, R.R., and Brown, P.B. (1996). Effect of diets containing various levels of protein and ethanol coproducts from corn on growth of tilapia fry. J. Agric. Food Chem. 44(6), 1491-1493. https://doi.org/10.1021/jf950733g
  83. Xue, S., Yao, X., Luo, W., Jha, D., Tester, M., Horie, T., and Schroeder, J.I. (2011). AtHKT1;1 mediates nernstian sodium channel transport properties in Arabidopsis root stelar cells. PLoS One 6, e24725. https://doi.org/10.1371/journal.pone.0024725
  84. Yamaguchi, T., and Blumwald E. (2005). Developing salt tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 10, 615-620. https://doi.org/10.1016/j.tplants.2005.10.002
  85. Yeo, A.R., and Flowers, T.J.(1986). Ion transport in Suaeda maritima: its relation to growth and implications for the pathway of radial transport of ions across the root. J. Exp. Bot. 37, 143-159. https://doi.org/10.1093/jxb/37.2.143
  86. Zandonadi, D.B., Canellas, L.P., and Façanha, A.R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast $H^{+}$ pumps activation. Planta 225, 1583-1595. https://doi.org/10.1007/s00425-006-0454-2

Cited by

  1. One-Pot Transformation of Technical Lignins into Humic-Like Plant Stimulants through Fenton-Based Advanced Oxidation: Accelerating Natural Fungus-Driven Humification vol.3, pp.7, 2017, https://doi.org/10.1021/acsomega.8b00697
  2. Structure and action mechanism of humic substances for plant stimulations vol.38, pp.3, 2017, https://doi.org/10.5333/kgfs.2018.38.3.175
  3. Can Humic Substances Improve Soil Fertility under Salt Stress and Drought Conditions? vol.48, pp.6, 2017, https://doi.org/10.2134/jeq2019.02.0071
  4. Expression Profiling of Candidate Genes in Sugar Beet Leaves Treated with Leonardite-Based Biostimulant vol.8, pp.4, 2017, https://doi.org/10.3390/ht8040018
  5. Quantitative Structure-Activity Relationship of Humic-Like Biostimulants Derived From Agro-Industrial Byproducts and Energy Crops vol.11, pp.None, 2017, https://doi.org/10.3389/fpls.2020.00581
  6. Synergistic Release of Crop Nutrients and Stimulants from Hydroxyapatite Nanoparticles Functionalized with Humic Substances: Toward a Multifunctional Nanofertilizer vol.5, pp.12, 2017, https://doi.org/10.1021/acsomega.9b04354
  7. Extending thermotolerance to tomato seedlings by inoculation with SA1 isolate of Bacillus cereus and comparison with exogenous humic acid application vol.15, pp.4, 2017, https://doi.org/10.1371/journal.pone.0232228
  8. Structural variation of humic-like substances and its impact on plant stimulation: Implication for structure-function relationship of soil organic matters vol.725, pp.None, 2017, https://doi.org/10.1016/j.scitotenv.2020.138409
  9. Impact of Seed Dressing and Soil Application of Potassium Humate on Cotton Plants Productivity and Fiber Quality vol.9, pp.11, 2017, https://doi.org/10.3390/plants9111444
  10. Plant chemical priming by humic acids vol.7, pp.None, 2020, https://doi.org/10.1186/s40538-020-00178-4
  11. Effects of Microbes from Coal-Related Commercial Humic Substances on Hydroponic Crop Cultivation: A Microbiological View for Agronomical Use of Humic Substances vol.69, pp.2, 2017, https://doi.org/10.1021/acs.jafc.0c05474
  12. Which Traits of Humic Substances Are Investigated to Improve Their Agronomical Value? vol.26, pp.3, 2017, https://doi.org/10.3390/molecules26030760
  13. Transcriptome Changes Reveal the Molecular Mechanisms of Humic Acid-Induced Salt Stress Tolerance in Arabidopsis vol.26, pp.4, 2017, https://doi.org/10.3390/molecules26040782
  14. Acclimation with humic acids enhances maize and tomato tolerance to salinity vol.8, pp.1, 2017, https://doi.org/10.1186/s40538-021-00239-2