DOI QR코드

DOI QR Code

Iron Homeostasis Controls Myeloid Blood Cell Differentiation in Drosophila

  • Yoon, Sunggyu (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Cho, Bumsik (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Shin, Mingyu (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Koranteng, Ferdinand (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Cha, Nuri (Department of Life Sciences, College of Natural Science, Hanyang University) ;
  • Shim, Jiwon (Department of Life Sciences, College of Natural Science, Hanyang University)
  • Received : 2017.11.06
  • Accepted : 2017.11.12
  • Published : 2017.12.31

Abstract

Iron is an essential divalent ion for aerobic life. Life has evolved to maintain iron homeostasis for normal cellular and physiological functions and therefore imbalances in iron levels exert a wide range of consequences. Responses to iron dysregulation in blood development, however, remain elusive. Here, we found that iron homeostasis is critical for differentiation of Drosophila blood cells in the larval hematopoietic organ, called the lymph gland. Supplementation of an iron chelator, bathophenanthroline disulfate (BPS) results in an excessive differentiation of the crystal cell in the lymph gland. This phenotype is recapitulated by loss of Fer1HCH in the intestine, indicating that reduced levels of systemic iron enhances crystal cell differentiation. Detailed analysis of Fer1HCH-tagged-GFP revealed that Fer1HCH is also expressed in the hematopoietic systems. Lastly, blocking Fer1HCH expression in the mature blood cells showed marked increase in the blood differentiation of both crystal cells and plasmatocytes. Thus, our work suggests a relevance of systemic and local iron homeostasis in blood differentiation, prompting further investigation of molecular mechanisms underlying iron regulation and cell fate determination in the hematopoietic system.

Keywords

References

  1. Agaisse, H., and Perrimon, N. (2004). The roles of JAK/STAT signaling in Drosophila immune responses. Immunol. Rev. 198, 72-82. https://doi.org/10.1111/j.0105-2896.2004.0133.x
  2. Benmimoun, B., Polesello, C., Waltzer, L., and Haenlin, M. (2012). Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717. https://doi.org/10.1242/dev.080259
  3. Brownlie, J.C., Cass, B.N., Riegler, M., Witsenburg, J.J., Iturbe-Ormaetxe, I., McGraw, E.A., and O'Neill, S.L. (2009). Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog. 5, e1000368. https://doi.org/10.1371/journal.ppat.1000368
  4. Cronin, S.J., Nehme, N.T., Limmer, S., Liegeois, S., Pospisilik, J.A., Schramek, D., Leibbrandt, A., Simoes Rde, M., Gruber, S., Puc, U., et al. (2009). Genome-wide RNAi screen identifies genes involved in intestinal pathogenic bacterial infection. Science 325, 340-343. https://doi.org/10.1126/science.1173164
  5. De Domenico, I., McVey Ward, D., and Kaplan, J. (2008). Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol. 9, 72-81. https://doi.org/10.1038/nrm2295
  6. Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
  7. Dixon, S.J., and Stockwell, B.R. (2014). The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9-17. https://doi.org/10.1038/nchembio.1416
  8. Dragojlovic-Munther, M., and Martinez-Agosto, J.A. (2012). Multifaceted roles of PTEN and TSC orchestrate growth and differentiation of Drosophila blood progenitors. Development 139, 3752-3763. https://doi.org/10.1242/dev.074203
  9. Drakesmith, H., and Prentice, A.M. (2012). Hepcidin and the ironinfection axis. Science 338, 768-772. https://doi.org/10.1126/science.1224577
  10. Evans, C.J., Hartenstein, V., and Banerjee, U. (2003). Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673-690. https://doi.org/10.1016/S1534-5807(03)00335-6
  11. Georgieva, T., Dunkov, B.C., Harizanova, N., Ralchev, K., and Law, J.H. (1999). Iron availability dramatically alters the distribution of ferritin subunit messages in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 96, 2716-2721. https://doi.org/10.1073/pnas.96.6.2716
  12. Georgieva, T., Dunkov, B.C., Dimov, S., Ralchev, K., and Law, J.H. (2002). Drosophila melanogaster ferritin: cDNA encoding a light chain homologue, temporal and tissue specific expression of both subunit types. Insect. Biochem. Mol. Biol. 32, 295-302.
  13. Gold, K.S., and Bruckner, K. (2015). Macrophages and cellular immunity in Drosophila melanogaster. Semin. Immunol. 27, 357-368. https://doi.org/10.1016/j.smim.2016.03.010
  14. Gonzalez-Morales, N., Mendoza-Ortiz, M.A., Blowes, L.M., Missirlis, F., and Riesgo-Escovar, J.R. (2015). Ferritin Is Required in Multiple Tissues during Drosophila melanogaster Development. PLoS One 10, e0133499. https://doi.org/10.1371/journal.pone.0133499
  15. Grigorian, M., Mandal, L., and Hartenstein, V. (2011). Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland. Dev. Genes Evol. 221, 121-131. https://doi.org/10.1007/s00427-011-0364-6
  16. Handke, B., Poernbacher, I., Goetze, S., Ahrens, C.H., Omasits, U., Marty, F., Simigdala, N., Meyer, I., Wollscheid, B., Brunner, E., et al. (2013). The hemolymph proteome of fed and starved Drosophila larvae. PLoS One 8, e67208. https://doi.org/10.1371/journal.pone.0067208
  17. Jung, S.H., Evans, C.J., Uemura, C., and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533. https://doi.org/10.1242/dev.01837
  18. Khadilkar, R.J., Ray, A., Chetan, D.R., Sinha, A.R., Magadi, S.S., Kulkarni, V., and Inamdar, M.S. (2017). Differential modulation of the cellular and humoral immune responses in Drosophila is mediated by the endosomal ARF1-Asrij axis. Sci. Rep. 7, 118. https://doi.org/10.1038/s41598-017-00118-7
  19. Kremer, N., Voronin, D., Charif, D., Mavingui, P., Mollereau, B., and Vavre, F. (2009). Wolbachia interferes with ferritin expression and iron metabolism in insects. PLoS Pathog. 5, e1000630. https://doi.org/10.1371/journal.ppat.1000630
  20. Lanot, R., Zachary, D., Holder, F., and Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257. https://doi.org/10.1006/dbio.2000.0123
  21. Lebestky, T., Jung, S.H., and Banerjee, U. (2003). A Serrateexpressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348-353. https://doi.org/10.1101/gad.1052803
  22. Letourneau, M., Lapraz, F., Sharma, A., Vanzo, N., Waltzer, L., and Crozatier, M. (2016). Drosophila hematopoiesis under normal conditions and in response to immune stress. FEBS Lett. 590, 4034-4051. https://doi.org/10.1002/1873-3468.12327
  23. Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., and Banerjee, U. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324. https://doi.org/10.1038/nature05585
  24. Mandilaras, K., and Missirlis, F. (2012). Genes for iron metabolism influence circadian rhythms in Drosophila melanogaster. Metallomics 4, 928-936. https://doi.org/10.1039/c2mt20065a
  25. Mandilaras, K., Pathmanathan, T., and Missirlis, F. (2013). Iron absorption in Drosophila melanogaster. Nutrients 5, 1622-1647. https://doi.org/10.3390/nu5051622
  26. Missirlis, F., Holmberg, S., Georgieva, T., Dunkov, B.C., Rouault, T.A., and Law, J.H. (2006). Characterization of mitochondrial ferritin in Drosophila. Proc. Natl. Acad. Sci. USA 103, 5893-5898. https://doi.org/10.1073/pnas.0601471103
  27. Missirlis, F., Kosmidis, S., Brody, T., Mavrakis, M., Holmberg, S., Odenwald, W.F., Skoulakis, E.M., and Rouault, T.A. (2007). Homeostatic mechanisms for iron storage revealed by genetic manipulations and live imaging of Drosophila ferritin. Genetics 177, 89-100. https://doi.org/10.1534/genetics.107.075150
  28. Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., and Banerjee, U. (2011). Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600. https://doi.org/10.1016/j.cell.2011.11.041
  29. Morin-Poulard, I., Vincent, A., and Crozatier, M. (2013). The Drosophila JAK-STAT pathway in blood cell formation and immunity. JAKSTAT 2, e25700.
  30. Mukherjee, T., Kim, W.S., Mandal, L., and Banerjee, U. (2011). Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210-1213. https://doi.org/10.1126/science.1199643
  31. Owusu-Ansah, E., and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541. https://doi.org/10.1038/nature08313
  32. Ponka, P. (1997). Tissue-specific regulation of iron metabolism and heme synthesis: distinct control mechanisms in erythroid cells. Blood 89, 1-25.
  33. Qiu, P., Pan, P.C., and Govind, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125, 1909-1920.
  34. Rizki, T.M., and Rizki, R.M. (1978). Larval adipose tissue of homoeotic bithorax mutants of Drosophila. Dev. Biol. 65, 476-482. https://doi.org/10.1016/0012-1606(78)90042-8
  35. Rizki, T.M., Rizki, R.M., and Bellotti, R.A. (1985). Genetics of a Drosophila phenoloxidase. Mol. Gen. Genet. 201, 7-13. https://doi.org/10.1007/BF00397978
  36. Rouault, T.A., and Tong, W.H. (2005). Iron-sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat. Rev. Mol. Cell Biol. 6, 345-351.
  37. Santambrogio, P., Levi, S., Cozzi, A., Corsi, B., and Arosio, P. (1996). Evidence that the specificity of iron incorporation into homopolymers of human ferritin L- and H-chains is conferred by the nucleation and ferroxidase centres. Biochem. J. 314 ( Pt 1), 139-144. https://doi.org/10.1042/bj3140139
  38. Sheftel, A.D., Mason, A.B., and Ponka, P. (2012). The long history of iron in the Universe and in health and disease. Biochim. Biophys. Acta 1820, 161-187. https://doi.org/10.1016/j.bbagen.2011.08.002
  39. Shim, J. (2015). Drosophila blood as a model system for stress sensing mechanisms. BMB Rep 48, 223-228. https://doi.org/10.5483/BMBRep.2015.48.4.273
  40. Shim, J., Mukherjee, T., and Banerjee, U. (2012). Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat. Cell Biol. 14, 394-400. https://doi.org/10.1038/ncb2453
  41. Shim, J., Gururaja-Rao, S., and Banerjee, U. (2013). Nutritional regulation of stem and progenitor cells in Drosophila. Development 140, 4647-4656. https://doi.org/10.1242/dev.079087
  42. Sinenko, S.A., Shim, J., and Banerjee, U. (2011). Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep. 13, 83-89. https://doi.org/10.1038/embor.2011.223
  43. Sorrentino, R.P., Carton, Y., and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243, 65-80. https://doi.org/10.1006/dbio.2001.0542
  44. Sulieman, M., Asleh, R., Cabantchik, Z.I., Breuer, W., Aronson, D., Suleiman, A., Miller-Lotan, R., Hammerman, H., and Levy, A.P. (2004). Serum chelatable redox-active iron is an independent predictor of mortality after myocardial infarction in individuals with diabetes. Diabetes Care 27, 2730-2732. https://doi.org/10.2337/diacare.27.11.2730
  45. Tang, X., and Zhou, B. (2013). Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J. 27, 288-298. https://doi.org/10.1096/fj.12-213595
  46. Waltzer, L., Gobert, V., Osman, D., and Haenlin, M. (2010). Transcription factor interplay during Drosophila haematopoiesis. Int. J. Dev. Biol. 54, 1107-1115. https://doi.org/10.1387/ijdb.093054lw
  47. Yoshiga, T., Georgieva, T., Dunkov, B.C., Harizanova, N., Ralchev, K., and Law, J.H. (1999). Drosophila melanogaster transferrin. Cloning, deduced protein sequence, expression during the life cycle, gene localization and up-regulation on bacterial infection. Eur. J. Biochem. 260, 414-420.
  48. Zettervall, C.J., Anderl, I., Williams, M.J., Palmer, R., Kurucz, E., Ando, I., and Hultmark, D. (2004). A directed screen for genes involved in Drosophila blood cell activation. Proc. Natl. Acad. Sci. USA 101, 14192-14197. https://doi.org/10.1073/pnas.0403789101

Cited by

  1. Iron Deficiency Reduces Synapse Formation in the Drosophila Clock Circuit pp.1559-0720, 2018, https://doi.org/10.1007/s12011-018-1442-7
  2. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism vol.9, pp.1664-042X, 2018, https://doi.org/10.3389/fphys.2018.00050
  3. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila vol.11, pp.1, 2020, https://doi.org/10.1038/s41467-020-18135-y
  4. Loss of ferritin in developing wing cells: Apoptosis and ferroptosis coincide vol.16, pp.1, 2017, https://doi.org/10.1371/journal.pgen.1008503
  5. RNAi‐mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity vol.77, pp.1, 2021, https://doi.org/10.1002/ps.6026
  6. A functional genomics screen identifying blood cell development genes in Drosophila by undergraduates participating in a course-based research experience vol.11, pp.1, 2017, https://doi.org/10.1093/g3journal/jkaa028
  7. Characterization of the Drosophila Adult Hematopoietic System Reveals a Rare Cell Population With Differentiation and Proliferation Potential vol.9, pp.None, 2017, https://doi.org/10.3389/fcell.2021.739357
  8. Chk2-p53 and JNK in irradiation-induced cell death of hematopoietic progenitors and differentiated cells in Drosophila larval lymph gland vol.10, pp.8, 2017, https://doi.org/10.1242/bio.058809