• Title/Summary/Keyword: Root uptake

Search Result 348, Processing Time 0.025 seconds

Predictions of $^{90}Sr$ and $^{137}Cs$ Concentrations in Rice Seeds and Chinese Cabbage after a Nuclear Accident (원자력 사고후 쌀알과 배추내 $^{90}Sr$$^{137}Cs$ 농도 예측)

  • Choi, Yong-Ho;Lim, Kwang-Muk;Hwang, Won-Tae;Lee, Han-Soo;Lee, Chang-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.3
    • /
    • pp.127-146
    • /
    • 2002
  • A method of more realistically, predicting radionuclide concentrations in crop plants varying with time after a nuclear accident was established to estimate 50 years' concentrations of $^{90}Sr$ and $^{137}Cs$ in polished rice seeds and Chinese cabbage for unit dry deposition. After non-growing season accidents, concentrations of both nuclides decreased gradually with time and $^{90}Sr$ concentrations were higher than those of $^{137}Cs$ throughout the whole period. Radionuclide concentrations in the 1 st year after growing season accidents were on the whole higher than those after non-growing season accidents by factors of up to 30 for $^{90}Sr$ and up to 1,000 for $^{137}Cs$. In polished rice seeds, the 50 years-integrated concentration was higher for $^{90}Sr$ than for $^{137}Cs$ after non-growing season accidents, whereas the opposite was true after growing season accidents. In Chinese cabbage. however, it was higher for $^{90}Sr$ than for $^{137}Cs$ after both types of the accident. Generally speaking, the dominant pathway for the integrated concentration after the growing season accident was root uptake for $^{90}Sr$ and direct plant contamination for $^{137}Cs$. The effect of resuspension was negligible. Based on the predicted results. the direct]on of planning countermeasures was suggested for various accident conditions.

The Short-term Effects of Soil Brought and Subsoil Inversion on Growth and Tissue Nutrient Concentrations of Fraxinus rhynchophylla, Pinus densiflora, and Pinus koraiensis Seedlings in a Nursery (객토와 심토뒤집기 처리가 물푸레나무, 소나무, 잣나무 묘목의 초기 생장과 양분함량에 미치는 영향)

  • An, Ji Young;Park, Byung Bae;Byun, Jae Kyung;Cho, Min Seok;Kim, Yong Suk;Han, Si Ho;Kim, Se Bin
    • Journal of Korean Society of Forest Science
    • /
    • v.104 no.1
    • /
    • pp.43-49
    • /
    • 2015
  • The production of high quality seedlings is a very important phase in silvicultural systems for successful reforestation or restoration. The purpose of this study was to quantitatively measure both growth performances and nutrient responses of Fraxinus rhynchophylla, Pinus densiflora, and Pinus koraiensis seedlings, which are commercially planted in Korea, according to the different types of soil improvement treatments. We applied soil brought (hereafter 'brought'), subsoil inversion (hereafter 'subsoil'), and mixture of brought soil with soil on nursery bed (hereafter 'mixing') in a permanent national nursery. Silt and clay contents were the highest at the subsoil treatment and organic material, soil nitrogen and phosphorus concentrations were the lowest at the brought treatment. The growth of F. rhynchophylla was the lowest at the subsoil treatment, but there were no significant differences among treatments. There were significant differences in only root nutrient concentrations of F. rhynchophylla among treatments: nitrogen, phosphorus, and potassium concentrations were the lowest at the subsoil or brought treatment. Mixing treatment increased N contents with deduction of N concentrations ('dilution') because of more dry weight increase compared with the amount of N uptake. This study suggested mix of brought soil with soil on a nursery bed in a permanently used nursery can economically be an effective technique to improve soil quality.

산삼의 배양 및 그 응용에 관한 연구

  • 신미희
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.27 no.2
    • /
    • pp.45-56
    • /
    • 2001
  • Korea mountain ginseng known as oriental miracle drug is an important medicinal plant. The effect of mountain ginseng adventitious roots extract has been described. The valuable root of mountain ginseng contained several kinds of ginsenosides that have been confirmed to have many active functions for the human body. However, the study of mountain ginseng has a limit because the price of wild ginseng is very expensive and rare. The mountain ginseng adventitious roots were derived from mountain ginseng callus that were induced from mountain ginseng roots. Adventitious roots were separated from callus and grown in solid media(Murachige and stoog media). It was cultured in a 20L bioreactor. After culturing for 40days, adventitious roots were harvested. Afterwards the harvested mountain ginseng adventitious roots were dryed and extracted. We examined the effect on melanogenesis of mountain ginseng adventitious roots extract. Here, we report the inhibitory effect of melanin biosynthesis on the adventitious roots extract of In vitro test. Also, we assessed the safety of adventitious roots extract. In vitro, cytotoxicity of adventitious roots extract was assessed in mouse fibroblast using two method: The neutral red uptake assay and the MTT assay. In vivo, the allergic and irritant were Patch teated in 30 patients. Consequently, extract of mountain ginseng adventitious roots have inhibitory effect on melanin biosynthesis in B-16 melanoma cell test, tyrosinase inhibitory test and DOPA auto-oxidation test. There were decreased 86%(0.5% concentration), 45%(1% concentration) and 61%(1% concentration), respectively.

  • PDF

Nutrient Distribution and Requirements of Jinok, Hongisul Grapevine Bred in Korea (국내 신품종 포도 품종 진옥, 홍이슬의 수체양분분포 및 양분요구도)

  • Jung, Sung Min;Chang, Eun Ha;Kim, Jin Guk;Park, Seo Jun;Nam, Jong Chul;Roh, Jeong Ho;Hur, Youn Young;Park, Kyo Sun
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.327-335
    • /
    • 2012
  • Nutrient uptake of each part of grapevine in the new grapevine cultivars (Jinok, Hongisul) was analyzed for making standard of annual fertilizations at four years. One year grown diploid cultivar 'Jinok' was showed more vigorous growth of root than other cultivar. Annually total nutrient of grapevine was absorbed with the same ratio of three major nutrients (Nitrogen, Phosphate, and Potassium). However about 30% of total absorbed nutrient of 3~4 year grown grapevine was distributed bunches. Potassium was measured as major nutrient in the bunch, accumulated in the peel and flesh (about 1% of D.W.). Magnesium was mainly accumulated in the petiole (about 1% of D.W.). Calcium has accumulated in the leaf (about 0.95% of D.W.), that concentration in this part was similar concentration of nitrogen (about 1.25% of D.W.). Nutrient requirement of four year grown 'Jinok' (N; 55.5 g, P; 7.7 g, K; 42.0 g, Ca; 34.6 g, Mg; 11.1 g) required less fertilizers than 'Campbell Early' (N; 57.4 g, P; 7.9 g, K; 44.4 g, Ca; 37.3 g, Mg; 12.2 g) needed. 'Hongisul' required less fertilizers compared to other grapevine cultivars, but cultural practice system for production of grape should be develop to improve their poor bud burst and fruit set.

The Value of Preoperative MRI and Bone Scan in Percutaneous Vertebroplasty for Osteoporotic Vertebral Compression Fractures (골다공증성 척추체 압박골절에 대한 경피적 척추성형술시 자기공명영상과 골 주사 검사의 의의)

  • Kim, Se Hyuk;Lee, Wan Su;Seo, Eui Kyo;Shin, Yong Sam;Zhang, Ho Yeol;Jeon, Pyoung
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.7
    • /
    • pp.907-915
    • /
    • 2001
  • Objective : Percutaneous vertebroplasty is often complicated by the presence of multiple fractures or non-localizing pain in the patients with osteoporotic vertebral fractures. The purpose of this study is to estimate the value of preoperative radiologic studies in the localization of symptomatic vertebrae and to determine the factors which can influence on the clinical results. Materials and Methods : We retrospectively reviewed the clinical and radiologic data of 57 vertebrae in 30 patients underwent percutaneous vertebroplasty for osteoporotic vertebral compression fractures. Inclusion criteria was severe pain(McGill-Melzack score 3, 4 or 5) associated with the acute vertebral fractures and absence of spinal nerve root or cord compression sign. Acute symptomatic vertebral fracture was determined by the presence of signal change on MR images or increased uptake on whole body bone scan. Results : Pain improvement was obtained immediately in all patients and favorable result was sustained in 26 patients(86.7%) during the mean follow-up duration of 4.7 months(5 complete pain relief, 21 marked pain relief). Those who underwent vertebroplasty for all acute symptomatic vertebrae had significantly better clinical result than those who did not. Further vertebral collapse and eventual bursting fracture occurred in 1 vertebra which showed intradiskal leakage of bone cement and disruption of cortical endplate on postoperative CT scan. Conclusion : Preoperative MR imaging and whole body bone scan are very useful in determining the symptomatic vertebrae, especially in the patients with multiple osteoporotic vertebral fractures. To obtain favorable clinical result, the careful radiologic evaluation as well as clinical assessment is required. Control of PMMA volume seems to be the most critical point for avoiding complications.

  • PDF

Change of Aboveground Carbon Storage in a Pinus rigida Stand in Gwangnung, Gyunggi-do, Korea (경기도(京畿道) 광릉(光陵) 리기다소나무임분(林分)의 지상부(地上部) 탄소저장량(炭素貯藏量) 변화(變化))

  • Kim, Choonsig;Jeong, Jin-Hyun
    • Journal of Korean Society of Forest Science
    • /
    • v.90 no.6
    • /
    • pp.774-780
    • /
    • 2001
  • Aboveground carbon storage and increment of a 31-year-old pitch pine (Pinus rigida) stand were measured for five years (1997~2001) in the Jungbu Forest Experiment Station, Gyeonggi-do, Korea. The carbon concentration in each component of aboveground and soil depth decreased in the order of needle>branch>stembark>stemwood>forest floor>0-15cm soil depth>15-30cm soil depth. The carbon storage except for root carbon was 140,600kgC/ha and the tree accounted for 61%, soil 31% and forest floor 8% of the stand carbon storage. Due to high tree mortality by Fusarium subglutinans infection and spring drought in 2001, carbon increment except for 2001 data was 3,233kgC/ha/yr and was in the order of stemwood>branch>stembark>needle. Carbon storage and increment were attributed to stand density and site quality. Carbon storage and increment were higher in the high site quality than in the lower site quality plot on similar tree density. Also, the high tree density site on similar site quality showed more carbon storage and increment compared with the lower tree density. The results suggest that site quality and tree density are a key factor determining carbon storage and increment in this pitch pine stand.

  • PDF

Effects of Supply Methods of Nutrient Solution on Growth of Grafted Cactus Gymnocalycium mihanovichii var. friedrichii Grown Hydroponically (접목선인장 비모란 수경재배시 배양액의 공급방법이 생육에 미치는 영향)

  • Hong, Seung Min;Cho, Chang Hui;Lee, Jung Jin;Chung, Jae Woon;Park, In Tae;Song, Cheon Young
    • FLOWER RESEARCH JOURNAL
    • /
    • v.17 no.3
    • /
    • pp.172-178
    • /
    • 2009
  • This experiment was conducted to elucidate the proper suppling frequency of nutrient solution for grafted cactus Gymnocalycium mihanovichii var. friedrichii grown hydroponically without medium. Grafted cactus seedlings were planted onto the cultivation bed without medium, using labor-saving tray. The treatments like 1, 3, 5 and 7 times of nutrient solution supply per day and continuous soaking of plant root in the nutrient solution during the daytime were tested in summer and winter season. The growth of grafted cactus was worst in the treatment of one time supply of nutrient solution per day, and there were not significant difference in growth of grafted cactus among other treatments both in summer and winter season. 17.6% of grafted cactus seedlings failed to rooting in the treatment of one time supply of nutrient solution per day in winter season. The proper suppling frequency of nutrient solution, for the grafted cactus Gymnocalycium mihanovichii var. friedrichii grown hydroponically without medium, was three times supply of nutrient solution per day both in summer and winter seasons considering growth and rooting of plants.

Effects of Organic Matter Concentration in Soil on Phytoavailability of Cadmium in Medicinal Plants

  • Noh, Yong-dong;Kim, Kwon-Rae;Kim, Won-Il;Jung, Ki-Yuol;Hong, Chang Oh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.319-325
    • /
    • 2015
  • The safety of plant species used as a source for herbal medicines and dietary supplements has recently been questioned due to poisonings associated with the presence of cadmium (Cd) in these plants. These plants can derive Cd from their presence in the soil. Organic matter (OM) concentrations in soils could affect the availability of Cd for plants. To determine the effect of OM concentration in soil on the concentration of plant available Cd and uptake of this toxic element by medicinal plants, soil and plant samples were collected from 102 fields supporting for 5 species of medicinal plants in 6 province of South Korea. Concentrations of OM and dissolved organic carbon (DOC) in soils affected the phytoavailability of Cd. One M $NH_4OAc$ extractable Cd concentration in soil increased with increasing OM concentrations. There were significantly positive relationships between 1 M $NH_4OAc$ extractable Cd concentration and OM concentration in soil and between 1 M $NH_4OAc$ extractable Cd concentration and DOC concentration. Likewise, OM and DOC concentrations significantly affected Cd concentration in medicinal plant soils. Cadmium concentration in medicinal plants increased with increasing OM concentration in soil [Cd concentration $(mg\;kg^{-1})= 0.179+1.424{\times}10^{-3}$ OM concentrations, $R^2=0.042*$] and with DOC concentration [Cd concentration $(mg\;kg^{-1})= 0.150+5.870{\times}10^{-4}$ DOC concentrations, $R^2=0.124***$]. These results might result from Cd-DOC complex which is easily absorbed Cd form by plant root. Dissolved organic carbon concentration had more positive relationship with Cd concentration in medicinal plants and 1 M $NH_4OAc$ extractable Cd concentration in soils than OM. Cadmium concentration in all 5 species of medicinal plant (Atractylodes macrocephala Koidzumi, Astragalus membranaceus, Codonopsis lanceolata, Platycodon grandiflorum, and Rehmannia glutinosa) significantly increased with increasing DOC concentration in soil. From the above results, formation of Cd-DOC complex caused by OM application might be mainly attributed to increase in Cd concentration in medicinal plants.

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.