• Title/Summary/Keyword: Root nodule

Search Result 127, Processing Time 0.018 seconds

Bacterial core community in soybean rhizosphere (콩 근권의 핵심 세균 군집)

  • Lee, Youngmi;Ahn, Jae-Hyung;Choi, Yu-Mi;Weon, Hang-Yeon;Yoon, Jung-Hoon;Song, Jaekyeong
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2015
  • Soybean is well known to be originated from Korea and far-east Asian countries, and studies of many root nodule bacteria associated with soybean have mainly-focused on nitrogen fixation, but much less study was carried out on bacterial community in the rhizosphere of soybean. In this study, we analyzed the bacterial community in rhizosphere of Korean soybean, Daepungkong using the pyrosequencing method based on the 16S rRNA gene to characterize the change of the rhizosphere community structure according to the growth stages of soybeans and to elucidate bacterial core community in rhizosphere of soybean. Our results revealed that bacterial community of rhizosphere soil differed from that of bulk soil and was composed of a total of 21 bacterial phyla. The predominant phylum in the rhizosphere of soybean was Proteobacteria (36.6-42.5%) and followed by Acidobacteria (8.6-9.4%), Bacteroidetes (6.1-10.9%), Actinobacteria (6.4-9.8%), and Firmicutes (5.7-6.3%). The bacterial core community in soybean rhizosphere was mainly composed of the operational taxonomic units (OTUs) belonging to the phylum Proteobacteria throughout all growth stages. The OTU00006 belonged to the genus Bradyrhizobium had the highest abundance and Steroidobacter, Streptomyces, Devosia were followed. These results show that bacterial core community in soybean rhizosphere was mainly composed of OTUs associated with plant growth promotion and nutrient cycles.

Polioencephalomyelitis in Pigs Experimentally Infected with Porcine Enterovirus Isolated in Korea: I. Histopathological Observations (Enterovirus 감염에 의한 자돈의 Polioencephalomyelit: I. 병리조직학적 관찰)

  • Shin, Tae-kyun;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.25 no.2
    • /
    • pp.103-112
    • /
    • 1985
  • A total of 1-0 colostrum-deprived pigs (1 or 2-day-old) and 6 pigs (35-day-old), which had been raised by natural maternal nursing, were used to study the pathogenicity of the porcine enteroviruses by the intracerebral and intramuscular routes of inoculation, which the enterovirus were isolated from the diseased pigs in Korea. The porcine enteroviruses produced an identical polioencephalomyelitis in colostrum-deprived pigs and 35-day-old pigs, which manifested clinical signs and histopathological changes. Clinically it was characterized by incoordination, rise in rectal temperature, ataxia, flaccid paralysis in all the experimental groups. Histopathologically, the lesions were present in both grey and white matter at all levels of central nervous system, though usually more severe in the grey matter. These changes were characterized by meningeal infiltration, degeneration of nerve cells, neuronophagia, diffuse and focal gliosis, glial nodules and perivascular lymphocytic infiltrations. Ganglionitis of the dorsal root ganglia was frequently observed. On the basis of the clinical and histopathological changes mentioned above, it was concluded that porcine enteroviruses isolated in Korea were pathogenic strains which could produce polioencephalomyelitis in pigs. The most severe Jisease was prcduced by the inoculation of both enterovirus and hog cholera vaccine in the 35-day-old pigs at a time when colostral immunity presumably was low. The porcine enterovirus infections seemed to be associated with certain stress factor such as hog cholera vaccine in or immediately following the weanling period.

  • PDF

Regulation of cementoblast differentiation and mineralization using conditioned media of odontoblast (상아모세포의 조건배지를 이용한 백악모세포의 분화와 석회화 조절)

  • Moon, Sang-Won;Kim, Hye-Sun;Song, Hyun-Jung;Choi, Hong-Kyu;Park, Jong-Tae;Kim, Heung-Joong;Jang, Hyun-Seon;Park, Joo-Cheol
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.2
    • /
    • pp.385-396
    • /
    • 2006
  • For the regeneration of periodontal tissues, the microenvironment for new attachment of connective tissue fibers should be provided, At this point of view, cementum formation in root surface plays a key role for this new attachment. This study was performed to figure out which factor promotes differentiation of cementoblast Considering anatomical structure of tooth, we selected the cells which may affect the differentiation of cementoblast - Ameloblast, OD11&MDPC23 for odontoblasts, NIH3T3 for fibroblsts and MG63 for osteoblasts. And OCCM30 was selected for cementoblast cell line. Then, the cell lines were cultured respectively and transferred the conditioned media to OCCM30. To evaluate the result, Alizarin red S stain was proceeded for evaluation of mineralization. The subjected mRNA genes are bone sialoprotein(BSP), alkaline phosphate(ALP) , osteocalcin(OC), type I collagen(Col I), osteonectin(SPARC ; secreted protein acidic and rich in cysteine). Expression of the gene were analysed by RT-PCR, The results were as follows: 1. For alizarin red S staining, control OCCM30 didn't show any mineralized red nodules until 14 days. But red nodules started to appear from about 4 days in MDPC-OCCM30 & OD11-OCCM30. 2. For results of RT-PCR, ESP mRNAs of control-OCCM30 and others were expressed from 14 days, but in MDPC23-OCCM30 & OD11-OCCM30 from 4 days. Like this, the gene expression of MDPC23-OCCM30 & OD11-OCCM30 were detected much earlier than others. 3. For confirmation of odontoblast effect on cementoblast, conditioned media of osteoblasts(MG63) which is mineralized by producing matrix vesicles didn't affect on the mineralized nodule formation of cementoblasts(OCCM30). This suggest the possibility that cementoblast mineralization is regulated by specific factor in dentin matrix protein rather than matrix vesicles. Therefore, we proved that the dentin/odontoblast promotes differentiation/mineralization of cementoblasts. This new approach might hole promise as diverse possibilities for the regeneration of tissues after periodontal disease.

Molecular mechanisms of hederagenin in bone formation (Hederagenin의 뼈 형성 관련 작용 기전 연구)

  • Hyun-Ju Seo;In-Sook Kwun;Jaehee Kwon;Yejin Sim;Young-Eun Cho
    • Journal of Nutrition and Health
    • /
    • v.55 no.6
    • /
    • pp.617-629
    • /
    • 2022
  • Purpose: Osteoporosis is characterized by structural deterioration of the bone tissue because of the loss of osteoblastic activity or the increase in osteoclastic activity, resulting in bone fragility and an increased risk of fractures. Hederagenin (Hed) is a pentacyclic triterpenoid saponin isolated from Dipsaci Radix, the dried root of Dipsacus asper Wall. Dipsaci Radix has been used in Korean herbal medicine to treat bone fractures. In this study, we attempted to demonstrate the potential anti-osteoporotic effect of Hed by examining its effect on osteoblast differentiation in MC3T3-E1 cells. Methods: Osteoblastic MC3T3-E1 cells were cultured in 0, 1, and 10 ㎍/mL Hed for 3 and 7 days. The activity of alkaline phosphatase (ALP), bone nodule formation and level of expression of bone-related genes and proteins were measured in MC3T3-E1 cells exposed to Hed. The western blot test was used to detect the activation of the bone morphogenetic protein-2 (BMP2)/ Suppressor of Mothers against Decapentaplegic (SMAD)1 pathway. Results: Hed significantly increased the proliferation of MC3T3-E1 cells. Intracellular ALP activity was significantly increased in the 1 ㎍/mL Hed-treated group. Hed significantly increased the concentration of calcified nodules. Furthermore, Hed significantly upregulated the expression of genes and proteins associated with osteoblast proliferation and differentiation, such as Runt-related transcription factor 2 (Runx2), ALP, osteopontin (OPN), and type I procollagen (ProCOL1). Induction of osteoblast differentiation by Hed was associated with increased BMP2. In addition, Hed induced osteoblast differentiation by increasing the activity of SMAD1/5/8. These results suggest that Hed has the potential to prevent osteoporosis by promoting osteoblastogenesis in osteoblastic MC3T3-E1 cells via the modulation of the BMP2/SMAD1 pathway. Conclusion: The results presented in this study indicate that Hed isolated from Dipsaci Radix has the potential to be developed as a healthcare food and functional material possessing anti-osteoporosis effects.

Studies on the Response of Rhizobium Inoculation and Nitrogen Concentration to Soybean Growth in Nutri-culture 2. Effects of Rhizobium Inoculation and Nitrogen Concentration on Growth and Yield of Soybean Cultivars (양액재배에 있어 근류균의 접종 및 질소반응에 관한 연구 2보. 근류균의 접종 및 질소시용량이 대두품종의 생육 및 수량에 미치는 영향)

  • 이홍석;윤성환
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.4
    • /
    • pp.400-407
    • /
    • 1989
  • This experiment was carried out to study the effects of nitrogen concentration of cultural solution, Rhizobium inoculation, and planting density on the growth and yield of soybean cultivars, Hwanggeumkong, Jangbaegkong, Paldalkong, Clark, and non-nodulation isoline of Clark. Rhizobium inoculation increased the stem length, particularly in Hwanggeumkong, Jangbaegkong, and decreased it significantly in non-nodulation Clark. Stem length was increased by the increase in nitrogen fertilization by the 195ppm level and decreased by the increase in plant population density. Rhizobium inoculation also increased the shoot dry weight, but significantly decreased it in non-nodulation Clark. As nitrogen concentration in the cultural solution increased the shoot dry weight decreased in Jangbaegkong and paldalkong. However, the shoot dry weight was decreased by the increase in plant population density. Rhizobium inoculation and the increase in nitrogen concentration of cultural solution increased the ratio of shoot dry weight to root weight. The Rhizobium inoculation and the increase in nitrogen concentration of cultural solution increased the grain yield per pot in Hwanggeumkong and paldolkong, While non-nodulating Clark showed significant decrease in grain yield. Grain yield per pot was also increased by the increase of plant population density. Grain yield was significantly correlated with shoot dry weight, nodule number, and nitrogen content of the soybean plants. The correlation between nitrogen contents of the soybean plants and stem length, shoot dry weight, and nodulation was significant. The allantoin-N content in stem was also significantly correlated with nodulation.

  • PDF

Changes of Leaf Nitrogen and Petiole Ureide Content in Soybean [Glycine max (L.) Merrill] under Waterlogging Condition (과습에 따른 콩 엽 질소농도 및 엽병의 ureide 함량 변화)

  • Lee, Jae-Eun;Kim, Hong-Sig;Kwon, Young-Up;Jung, Gun-Ho;Kim, Sun-Lim
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.4
    • /
    • pp.385-393
    • /
    • 2011
  • Soybean is the most promising crop for substituting rice on the paddy field. Excessive water stress is a common limiting factor in soybean yield under paddy soil condition. This study was carried out to identify changes in leaf total nitrogen and petiole ureide content under excess water conditions for establishing a screening system related to waterlogging tolerance. Waterlogging treatment was conducted by maintaining the water level on the soil surface for 10 days at the early vegetative growth stage ($V_5$) and the flowering stage ($R_2$). Leaf total nitrogen content, SPAD value and ureide content in petiole decreased in all soybean varieties in response to waterlogging, but the degree of decrease was much lesser in Pungsannamulkong and Muhankong than in Jangyeobkong and Myungjunamulkong, at 21 days after waterlogging treatment. This result means that root and nodule recovery rates were much higher in Pungsannamulkong and Muhankong than in Jangyeobkong and Myungjunamulkong after waterlogging treatment. The ureide and leaf nitrogen content showed high positive correlation with SPAD value, regardless of waterlogged stages. In conclusion, leaf nitrogen content, ureide content in petiole and leaf greenness were identified as promising indicator for screening soybeans which are tolerant of excess water.

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Dry Matter Yields of Orcharograss and White Clover (Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White Clover의 건물수량에 미치는 영향)

  • Jung, Yeun-Kyu
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • This pot experiment was conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and $100/0\%$ in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe+Cu/Mn+Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of $70\%$ in main element and $10\%$ in other 3 elements, respectively. 1. By the systematic variations of Fe, Mn, Cu, and Zn, the yields were more significantly influenced in white clover than in orchardgrass. In addition, the yields of white clover were closely correlated to the trends of root/nodule growth and flowering. In the Fe/Cu trial, the relatively high yields were obtained at the $100/0\%$ in orchardgrass and at the $75/25\%$ in white clover. The yields of white clover were more negatively influenced by the 100/0(Cu control) than by the 0/100(Fe control). The yields of orchardgrass, however, tended to be opposite to the above trends. 2. In the Mn/Zn trial, both forages showed generally high yields at the high ratios of Mn/Zn. Compared with orchardgrass, the yields of white clover were greatly decreased by the Mn-deficiency(low ratio of Mn/Zn). The effects of Zn on forage yields, however, were not recognized. 3. In the Fe+Cu/Mn+Zn trial, the yields of orchardgrass tended to be slightly different among the treatments. The yields of white clover, however, were relatively' high at the 75/25, and showed a severe decrease at the 100/0 in the 2nd half cuts. In the Fe/Mn/Cu/Zn trial, the yields of white clover tended to be relatively high at the Cu and Zn treatments. It was likely to be caused by the balanced Fe/Mn ratio.