• Title/Summary/Keyword: Root mean square (RMS)

Search Result 495, Processing Time 0.041 seconds

Precision Evaluation of Scanning the Digital Dental Abutment Impression and Dental Gypsum Model according to 3-dimensional Superimposing Different Skills (3차원 중첩 기술 차이에 따른 디지털 치과용 지대치 인상체 및 경석고 모형의 스캐닝 정밀도 평가)

  • Jeon, Jin-Hun
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.12
    • /
    • pp.639-645
    • /
    • 2018
  • The objective of this research was to compare the precision of scanning the digital abutment impression and gypsum model according to 3-dimensional superimposing different skills. There were made with the abutment impression and gypsum model of a maxillary 1st premolar, blue light scanner scanned to obtain the stereolithography (STL) file. After the same process was performed 10 more times without moving them on the scanner table about the abutment impression and gypsum model, respectively (n=11, per types). By superimposing the date of scanning the abutment impression and gypsum model used with no control and best-fit-alignment skills, 10 color-difference maps and root mean square (RMS) data were obtained. The independent t-test was performed to compare RMS data between the each other groups (${\alpha}=0.05$). In the scanning abutment impressions, $RMS{\pm}SD$ of no control, best-fit-alignment showed $6.86{\pm}0.94$, $5.04{\pm}0.24$. in the scanning gypsum model, $4.98{\pm}1.16$, $3.39{\pm}0.07$, all groups showed a significant difference (P<0.001). Trough the this study's result, not only best-fit-alignment but no control is used with digital dental computer-aided design/computer-aided manufacturing (CAD/CAM) research and clinical part.

Measurement and Comparative Analysis of Propagation Characteristics in 3, 6, 10, and 17 GHz in Two Different Indoor Corridors (두 가지 서로 다른 실내 복도에서 3, 6, 10, 17 GHz의 전파 특성 측정 및 비교 분석)

  • Seong-Hun Lee;Byung-Lok Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1031-1040
    • /
    • 2023
  • Propagation characteristics in line-of-sight(LOS) paths in 3, 6, 10, and 17 GHz frequency bands were measured and analyzed in two different indoor corridors: second floors of Buildings D2 and E2. The measurement was designed to measure when the receiving antenna moved at 0.5 m intervals from 3 m to 30 m, while the transmission antenna was fixed. The analysis of the two indoor corridors was compared by applying basic transmission loss, root mean square (RMS) delay spread, and K-factor. For basic transmission loss, the loss coefficient of the floating intercept path loss model was higher in the indoor corridor of Building E2 than in that of Building D2. Similarly, the RMS delay spread in the time domain was greater in the indoor corridor of Building E2. However, the indoor corridor of Building D2 exhibited higher K-factor in the 3, 6, and 17 GHz bands with lower wave propagation in the 10 GHz band. Despite the 2 indoor corridors being identical, the propagation characteristics varied due to different internal structures and materials. The results provide measurement data for ITU-R Recommendations regarding various indoor environments.

Measurement and Analysis of Propagation Characteristics in Curved Subway Tunnel Environments (곡선형 지하철 터널환경에서 전파 특성의 측정과 분석)

  • 정회동;박노준;강영진;송문규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.950-961
    • /
    • 2004
  • In this paper, we measured and analyzed propagation characteristics in a subway tunnel that is recently increasingly becoming one of the radio communication environments. The measurements are carried out in a subway tunnel with frequency bands of 2.45㎓ and 5.8㎓. The length of tunnel we used for this study is 175m of LOS (Line-of-sight) and 270m of NLOS (Non Line-of-Sight). The subway tunnel is curved and its cross section is horseshoe type. The measurement systems we employ in this study are a narrow-band system and a wide-band system. The narrow-band system is used to get path loss measurement and the wide-band system is used to figure out delay profile measurement. In particular, the wide-band system consists of 1023 length PN sequence generator using a chip rate of 80MHz based on a sliding correlation technique. The omni-directional antennas and directional antennas are used to analyze propagation characteristics for beam type of antenna. The path loss displays only pure path loss of a tunnel environment. The delay profile indicates the mean excess delay and RMS (root mean square) delay spread.

A Study on Current Ripple Reduction Due to Offset Error in SRF-PLL for Single-phase Grid-connected Inverters (단상 계통연계형 인버터의 SRF-PLL 옵셋 오차로 인한 전류 맥동 저감에 관한 연구)

  • Hwang, Seon-Hwan;Hwang, Young-Gi;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.68-76
    • /
    • 2014
  • This paper presents an offset error compensation algorithm for the accurate phase angle of the grid voltage in single-phase grid-connected inverters. The offset error generated from the grid voltage measurement process cause the fundamental harmonic component with grid frequency in the synchronous reference frame phase lock loop (PLL). As a result, the grid angle is distorted and the power quality in power systems is degraded. In addition, the dq-axis currents in the synchronous reference frame and phase current have the dc component, first and second order ripples compared with the grid frequency under the distorted grid angle. In this paper, the effects of the offset and scaling errors are analyzed based on the synchronous reference frame PLL. Particularly, the offset error can be estimated from the integrator output of the synchronous reference frame PLL and compensated by using proportional-integral controller. Moreover, the RMS (Root Mean Square) function is proposed to detect the offset error component. The effectiveness of the proposed algorithm is verified through simulation and experiment results.

Seed Crystal Surface Properties for Polytype Stability of SiC Crystals Growth (탄화규소 단결정의 폴리타입 안정화를 위한 종자정 표면특성 연구)

  • Lee, Sang-Il;Park, Mi-Seon;Lee, Doe-Hyung;Lee, Hee-Tae;Bae, Byung-Joong;Seo, Won-Seon;Lee, Won-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.12
    • /
    • pp.863-866
    • /
    • 2013
  • SiC crystal ingots were grown on 6H-SiC dual-seed crystals with different surface roughness and different seed orientation by a PVT (Physical Vapor Transport) method. 4H and 15R-SiC were grown on seed crystal with high root-mean-square (rms) value. The polytype of grown crystal on the seed crystal with lower rms value was confirmed to be 6H-SiC. On the other hand, all SiC crystals grown on seed crystals with different seed orientation were proven to be 6H-SiC. The surface roughness of seed crystals had no effect on the crystal structure of the grown crystals. However, the crystal quality of 6H-SiC single crystals grown on the on-axis seed were revealed to be slightly better than that of 6H-SiC crystal grown on the off-axis seed.

Extended Kalman Filtering for I.M.U. using MEMs Sensors (반도체 센서의 확장칼만필터를 이용한 자세추정)

  • Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.469-475
    • /
    • 2015
  • This paper describes about the method for designing an extended Kalman filter to accurately measure the position of the spatial-phase system using a semiconductor sensor. Spatial position is expressed by the correlation of the rotated coordinate system attached to the body from the inertia coordinate system (a fixed coordinate system). To express the attitude, quaternion was adapted as a state variable, Then, the state changes were estimated from the input value which was measured in the gyro sensor. The observed data is the value obtained from the acceleration sensor. By matching between the measured value in the acceleration sensor and the predicted calculation value, the best variable was obtained. To increase the accuracy of estimation, designation of the extended Kalman filter was performed, which showed excellent ability to adjust the estimation period relative to the sensor property. As a result, when a three-axis gyro sensor and a three-axis acceleration sensor were adapted in the estimator, the RMS(Root Mean Square) estimation error in simulation was retained less than 1.7[$^{\circ}$], and the estimator displayed good property on the prediction of the state in 100 ms measurement period.

Change of Pain Threshold and Nociceptive Flexion Reflex of Hyperalgesia Rat by High Voltage Pulsed Current (고전압맥동전류가 통각과민 백서의 통각역치 및 유해성 굴곡반사에 미치는 영향)

  • Kim, Su-Hyon;Moon, Dal-Ju;Choi, Sug-Ju;Jung, Dae-In;Lee, Jung-Woo;Jeong, Jin-Gyu;Kim, Tae-Youl
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2006
  • Purpose: This study conducted quantitative sensory test and nociceptive flexion reflex(NFR) measurement to examine degree of pain depending on polarity of high voltage pulsed current(HVPC) of hyperalgesia site in hyperalgesia rat by local thermal injury. mechanical pain threshold, thermal pain threshold and root mean square of NFR were measured. Methods: This study was conducted with control group I of hyperalgesia rat at hind paw by thermal injury and experimental groups divided into cathodal HVPC group II, anodal HVPC group III and alternate HVPC group IV. It measured pain threshold and root mean square(RMS) of NFR and obtained the following results. Results: Mechanical pain threshold of hyperalgeisa site was significantly increased at groups II, III and IV applying HVPC group compared to control group, but there was no difference among HVPC groups. Thermal pain threshold of hyperalgesia site showed a significant increase in group II. Group III showed significant difference after 4 days of hyperalgesia. RMS of NFR at hyperalgeisa site was significantly reduced in group II after 2 days of hyperalgesia. Group III showed significant decrease after 5 and 6 days of hyperalgesia. Conclusion: Consequently it was found that application of HVPC of hyperalgesia site increased pain threshold at hyperalgesia site by mechanical stimuli and thermal stimuli. NFR by electrical stimuli was similar to pain threshold by mechanical stimuli. Effects by polarity of HVPC showed the greatest reduction of hyperalgesia when cathodal electrode was used.

  • PDF

DGNSS-CP Performance Comparison of Each Observation Matrix Calculation Method (관측 행렬 산출 기법 별 DGNSS-CP 성능 비교)

  • Shin, Dong-hyun;Lim, Cheol-soon;Seok, Hyo-jeong;Yoon, Dong-hwan;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.433-439
    • /
    • 2016
  • Several low-cost global navigation satellite system (GNSS) receivers do not support general range-domain correction, and DGNSS-CP (differential GNSS) method had been suggested to solve this problem. It improves its position accuracy by projecting range-domain corrections to the position-domain and then differentiating the stand-alone position by the projected correction. To project the range-domain correction, line-of-sight vectors from the receiver to each satellite should be calculated. The line-of-sight vectors can be obtained from GNSS broadcast ephemeris data or satellite direction information, and this paper shows positioning performance for the two methods. Stand-alone positioning result provided from Septentrio PolaRx4 Pro receiver was used to show the difference. The satellite direction information can reduce the computing load for the DGNSS-CP by 1/15, even though its root mean square(RMS) of position error is bigger than that of ephemeris data by 0.1m.

A Study on the Three Dimentional Digital Analysis of Experimental Bite-marks with the Progress of Time (실험 교흔 조직의 경과시간에 따른 in vitro 3차원 디지털 분석 연구)

  • Bae, Eun-Jeong;Hong, Seung-Pyo;Lim, Joong Yeon
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.7
    • /
    • pp.683-690
    • /
    • 2020
  • The objective of this study was to analyze time-dependent changes in bite marks on pig skin. Bite marks produced by the average bite force of adults were analyzed three-dimensionally for 3 hours directly after its formation, at 1-hour intervals. The measured values were calculated by root mean square (RMS) and statistically analyzed by one-way ANOVA test (α = 0.05). The average bite sizes were 0.899 mm, 0.717 mm and 0.506 mm at the first, second and third intervals, respectively, and were significantly different between the three intervals (P < 0.05). A bite mark showed time-dependent changes in the compression level, showing the greatest change in the first interval. Changes in bite marks decreased over time, and bite marks were observed most prominently generated by the anterior dentition.

A VHF Band 4 Channel Phase Discriminator (VHF 대역 4채널 위상 판별기)

  • Park, Beom-Jun;Lee, Jeong-Hoon;Lee, Kyu-Song
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.912-918
    • /
    • 2014
  • In this paper, a VHF band multi channel phase discriminator for direction finding equipment using tripple baseline interferometer technique is proposed. In order to measure simultaneously phase difference between IF(Intermediate Frequency) signals of the direction finding equipment, phase discriminator was designed to have parallel structure with multi channel, the phase correlator of phase discriminator was designed with I, Q mixer for reducing number of components. And digital LUT(Look Up Table) was applied for compensating error of phase discriminator due to phase unbalance of RF components. The measured phase accuracy of fabricated phase discriminator was 2 degree RMS(Root Mean Square) at 30 dB SNR condition, which is superior to the phase accuracy of conventional product.