DOI QR코드

DOI QR Code

Seed Crystal Surface Properties for Polytype Stability of SiC Crystals Growth

탄화규소 단결정의 폴리타입 안정화를 위한 종자정 표면특성 연구

  • Lee, Sang-Il (Department of Components & Materials Engineering, Dong-Eui University) ;
  • Park, Mi-Seon (Department of Components & Materials Engineering, Dong-Eui University) ;
  • Lee, Doe-Hyung (Department of Components & Materials Engineering, Dong-Eui University) ;
  • Lee, Hee-Tae (Department of Components & Materials Engineering, Dong-Eui University) ;
  • Bae, Byung-Joong (Department of Components & Materials Engineering, Dong-Eui University) ;
  • Seo, Won-Seon (Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Won-Jae (Department of Components & Materials Engineering, Dong-Eui University)
  • 이상일 (동의대학교 융합부품공학과) ;
  • 박미선 (동의대학교 융합부품공학과) ;
  • 이도형 (동의대학교 융합부품공학과) ;
  • 이희태 (동의대학교 융합부품공학과) ;
  • 배병중 (동의대학교 융합부품공학과) ;
  • 서원선 (한국세라믹기술원 에너지환경소재본부 에너지변환소재팀) ;
  • 이원재 (동의대학교 융합부품공학과)
  • Received : 2013.08.23
  • Accepted : 2013.11.18
  • Published : 2013.12.01

Abstract

SiC crystal ingots were grown on 6H-SiC dual-seed crystals with different surface roughness and different seed orientation by a PVT (Physical Vapor Transport) method. 4H and 15R-SiC were grown on seed crystal with high root-mean-square (rms) value. The polytype of grown crystal on the seed crystal with lower rms value was confirmed to be 6H-SiC. On the other hand, all SiC crystals grown on seed crystals with different seed orientation were proven to be 6H-SiC. The surface roughness of seed crystals had no effect on the crystal structure of the grown crystals. However, the crystal quality of 6H-SiC single crystals grown on the on-axis seed were revealed to be slightly better than that of 6H-SiC crystal grown on the off-axis seed.

Keywords

References

  1. E. Y. Tupitsyn, Mater. Sci. Forum, 483, 21 (2005).
  2. Y. M. Tairov and V. F. Tsvetkov, Prog. Cryst. Growth Charact., 4, 111 (1982).
  3. Y. A. Vodakov, Phys. Status Solid, 51, 209 (1979). https://doi.org/10.1002/pssa.2210510123
  4. H. J. Rost, J. Doerschel, K. Irmscher, M. Rossberg, D. Shulz, and D. Siche, J. Cryst. Growth, 275, e451 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.018
  5. X. B. Li, E. W. Shi, Z. Z. Chen, and B. Xiao, Diamond & Related Materials, 16, 654 (2007). https://doi.org/10.1016/j.diamond.2006.11.078
  6. V. D. Heydemann, N. Schulze, D. L. Barrett, and G. Pensl, Appl. Phys. Lett., 69, 3728 (1996). https://doi.org/10.1063/1.117203
  7. Y. M. Tairov and V. F. Tsvetkov, Prog. Cryst. Growth Charact. 7, 111 (1983). https://doi.org/10.1016/0146-3535(83)90031-X
  8. D. Pandey and P. Krishna, Prog. Cryst. Growth Charact., 7, 213 (1983). https://doi.org/10.1016/0146-3535(83)90033-3
  9. S. Nishino. Y. Kojima, and J. Saraie, Springer proceeding in Physics, Amorphous and Crystalline Silicon Carbide III, ed. G. L. Harris, M. G. Spencer, C. Yang (Springer-Verlang, New York, 1992) p. 15.