• Title/Summary/Keyword: Room impulse response signal

Search Result 13, Processing Time 0.018 seconds

Room Acoustic Measurement System Using Impulse Response (임펄스응답을 이용한 실내음향 측정 시스템)

    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.63-67
    • /
    • 1999
  • Recently, a method of measuring impulse response is widely used for a room acoustic evaluation instead of measuring reverberation time by white noise excitation. Comparing with the traditional reverberation time measurement, this method has many advantages such as good repeatability and the ability to extract various room acoustic parameters at one measurement. In this study, the author developed a measuring system that can extract mono-aural room acoustic parameters from an impulse response measured with MLS (Maximum Length Sequence) signal excitation. These room acoustic parameters include reverberation times(EDT, RT), speech intelligibilities(C50, C80, D, U50, U80, AI) and sound strength(G). This paper introduces the configuration of the developed measuring system, test results and discussions for the measurements at several rooms.

  • PDF

Fast Convolution Method using Psycho-acoustic Filters in Sound Reverberator (잔향 생성기에서 심리 음향 필터를 이용한 고속 컨벌루션 방법)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1037-1041
    • /
    • 2007
  • With the advent of sound field simulator, many sound fields have been reproduced by obtaining the impulse responses of specific acoustic spaces like famous concert hall, opera house. This sound field reproduction has been done by the linear convolution operation between the sound input signal and the impulse response of certain acoustic space. However, the conventional finite impulse response based linear convolution operation always makes real-time implementation of sound field generator impossible due to the large amount of computational burden. This paper introduces the fast convolution method using perceptual redundancy in the processed signals, input audio signal and room impulse response. Temporal and spectral psycho-acoustic filters considering masking effects are implemented in the proposed convolution structure. It reduces the computational burden of convolution methods for realtime implementation of a sound field generator. The conventional convolutions are compared with the proposed one in views of computational burden and sound quality. In the proposed method, a considerable reduction in the computational burden was realized with acceptable changes in sound quality.

  • PDF

Fast Convolution Method Using Real-time Masking Effects in Sound Reverberator (잔향 생성기에서 실시간 마스킹 효과를 이용한 고속 컨벌루션 방법)

  • Shin, Min-Cheol;Wang, Se-Myung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.231-237
    • /
    • 2008
  • With the advent of sound field simulator, many sound fields have been reproduced by obtaining the impulse responses of specific acoustic spaces like famous concert hall, opera house. This sound field reproduction has been done by the linear convolution operation between the sound input signal and the impulse response of certain acoustic space. However, the conventional finite impulse response based linear convolution operation always makes real-time implementation of sound field generator impossible due to the large amount of computational burden. This paper introduces the fast convolution method using perceptual redundancy in the processed signals, input audio signal and room impulse response. Temporal and spectral real-time masking blocks are implemented in the proposed convolution structure. It reduces the computational burden of convolution methods for real-time implementation of a sound field generator. The conventional convolutions are compared with the proposed one in views of computational burden and sound quality. In the proposed method, a considerable reduction in the computational burden was realized with acceptable changes in sound quality.

Reverberator Design by Measured Room Impulse Response Signal Modeling (측정된 실내 충격 응답 신호 모델링에 의한 잔향 필터 설계)

  • 안상태
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.3.2-6
    • /
    • 1998
  • 본 논문에서는 실측된 실내 충격 응답을 모델링하여 실내 잔향 필터 설계를 시도하였다. 급강하법(steepest descent method)을 이용하여 측정된 실내 충격 응답을 4개의 콤 필터(comb filter)와 2개의 올패스 필터(allpass filter)로 이루어진 잔향 필터로 모델링하여, 잔향 필터의 계수를 결정하였다.

  • PDF

Application of Digital Signal Analysis Technique to Enhance the Quality of Tracer Gas Measurements in IAQ Model Tests

  • Lee, Hee-Kwan;Awbi, Hazim B.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.E2
    • /
    • pp.66-73
    • /
    • 2007
  • The introduction of tracer gas techniques to ventilation studies in indoor environments provides valuable information that used to be unattainable from conventional testing environments. Data acquisition systems (DASs) containing analogue-to-digital (A/D) converters are usually used to function the key role that records signals to storage in digital format. In the testing process, there exist a number of components in the measuring equipment which may produce system-based inference to the monitored results. These unwanted fluctuations may cause significant error in data analysis, especially when non-linear algorithms are involved. In this study, a pre-processor is developed and applied to separate the unwanted fluctuations (noise or interference) in raw measurements and to reduce the uncertainty in the measurement. Moving average, notch filter, FIR (Finite Impulse Response) filters, and IIR (Infinite Impulse Response) filters are designed and applied to collect the desired information from the raw measurements. Tracer gas concentrations are monitored during leakage and ventilation tests in the model test room. The signal analysis functions are introduced to carry out the digital signal processing (DSP) work. Overall the FIR filters process the $CO_2$ measurement properly for ventilation rate and mean age of air calculations. It is found that, the Kaiser filter was the most applicable digital filter for pre-processing the tracer gas measurements. Although the IIR filters help to reduce the random noise in the data, they cause considerable changes to the filtered data, which is not desirable.

Audio Contents Adaptation Technology According to User′s Preference on Sound Fields (사용자의 음장선호도에 따른 오디오 콘텐츠 적응 기술)

  • 강경옥;홍재근;서정일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.6
    • /
    • pp.437-445
    • /
    • 2004
  • In this paper. we describe a novel method for transforming audio contents according to user's preference on sound field. Sound field effect technologies. which transform or simulate acoustic environments as user's preference, are very important for enlarging the reality of acoustic scene. However huge amount of computational power is required to process sound field effect in real time. so it is hard to implement this functionality at the portable audio devices such as MP3 player. In this paper, we propose an efficient method for providing sound field effect to audio contents independent of terminal's computational power through processing this functionality at the server using user's sound field preference, which is transfered from terminal side. To describe sound field preference, user can use perceptual acoustic parameters as well as the URI address of room impulse response signal. In addition, a novel fast convolution method is presented to implement a sound field effect engine as a result of convoluting with a room impulse response signal at the realtime application. and verified to be applicable to real-time applications through experiments. To verify the evidence of benefit of proposed method we performed two subjective listening tests about sound field descrimitive ability and preference on sound field processed sounds. The results showed that the proposed sound field preference can be applicable to the public.

Performance Improvement of Stereo Acoustic Echo Canceller Using MINT Filtering (MINT 필터링에 의한 스테레오 음향 반향 제거기의 성능 향상)

  • 차경환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.42-46
    • /
    • 2002
  • In this paper, a new pre-processing algorithm is proposed to improve the performance of stereo acoustic echo canceller. The proposed algorithm has the improved performance by the estimation error reduction of filter coefficient using input signal which was reduced reverberation of room in the basis MINT (Mu1tip1e-input/output Inverse Theorem) filtering. For real stereo speech signal and real room impulse response the results of simulation, we showed that the proposed method could improved 3∼5 dB ERLE (Echo Return Loss Enhancement) regardless of NLMS (Normalized Least Mean Square) and Projection adaptive algorithm.

Factors for Speech Signal Time Delay Estimation (음성 신호를 이용한 시간지연 추정에 미치는 영향들에 관한 연구)

  • Kwon, Byoung-Ho;Park, Young-Jin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.823-831
    • /
    • 2008
  • Since it needs the light computational load and small database, sound source localization method using time delay of arrival(TDOA method) is applied at many research fields such as a robot auditory system, teleconferencing and so on. Researches for time delay estimation, which is the most important thing of TDOA method, had been studied broadly. However studies about factors for time delay estimation are insufficient, especially in case of real environment application. In 1997, Brandstein and Silverman announced that performance of time delay estimation deteriorates as reverberant time of room increases. Even though reverberant time of room is same, performance of estimation is different as the specific part of signals. In order to know that reason, we studied and analyzed the factors for time delay estimation using speech signal and room impulse response. In result, we can know that performance of time delay estimation is changed by different R/D ratio and signal characteristics in spite of same reverberant time. Also, we define the performance index(PI) to show a similar tendency to R/D ratio, and propose the method to improve the performance of time delay estimation with PI.

Speech Quality Estimation Algorithm using a Harmonic Modeling of Reverberant Signals (반향 음성 신호의 하모닉 모델링을 이용한 음질 예측 알고리즘)

  • Yang, Jae-Mo;Kang, Hong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.919-926
    • /
    • 2013
  • The acoustic signal from a distance sound source in an enclosed space often produces reverberant sound that varies depending on room impulse response. The estimation of the level of reverberation or the quality of the observed signal is important because it provides valuable information on the condition of system operating environment. It is also useful for designing a dereverberation system. This paper proposes a speech quality estimation method based on the harmonicity of received signal, a unique characteristic of voiced speech. At first, we show that the harmonic signal modeling to a reverberant signal is reasonable. Then, the ratio between the harmonically modeled signal and the estimated non-harmonic signal is used as a measure of standard room acoustical parameter, which is related to speech clarity. Experimental results show that the proposed method successfully estimates speech quality when the reverberation time varies from 0.2s to 1.0s. Finally, we confirm the superiority of the proposed method in both background noise and reverberant environments.

Acoustic Echo Canceler with Stepsize Comparater for Robust of Room Impulse Response Distortion (Room 임펄스응답의 왜곡에 강건하기 위해 Stepsize 비교기를 추가한 Acoustic Echo Canceler)

  • 이세원;강희훈;나희수;이성백
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.189-192
    • /
    • 2001
  • A new configuration of acoustic echo canceler with stepsize predictor and comparator is proposed in this paper. Conventional acoustic echo cancelers using ES(Exponential Step)algorithm has fast convergence speed, but very weak in interference of environment. The proposed stepsize predictor and comparator improve conventional acoustic echo canceler's defects. The Stepsize predictor generates a stepsize value using residual power of error signal. The stepsize comparator selects the stepsize value that is better performance in a acoustic echo canceler using a stepsize decision factor. The Simulation results show superiority of the proposed acoustic echo canceler in environment interference.

  • PDF