• Title/Summary/Keyword: Room Temperature Coating

Search Result 276, Processing Time 0.022 seconds

Wear Mechanism of Plasma-Sprayed Coating in Mo- and Co-Based Alloy

  • Lee, Soo W.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.108-113
    • /
    • 1995
  • Wear and friction behavior of plasma-sprayed coatings in Mo- and Co-based alloy were studied for the application of piston-ring automobile engine. The plasma-sprayed coatings were varied with gun current density, gas flow, and distance. The surface roughness, microhardness, and wear volume were measured depending on the spray distances. The high temperature hardness value were also measured as a function of temperature. Ball-on-disc geometry configuration tribometer was utilized in air. The wear tests were performed in the temperature ranges from room temperature to 825$^{\circ}$C to investigate the tribological trend of the piston-ring materials in the lack of lubricant. The cross sections of wear track were investigated, using microscopy.

Cracked-Healing and Bending Strength of Si3N4 Ceramics (Si3N4 세라믹스의 균열 치유와 굽힘 강도 특성)

  • Nam, Ki-Woo;Park, Seung-Won;Do, Jae-Youn;Ahn, Seok-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.957-962
    • /
    • 2008
  • Crack-healing behavior of $Si_3N_4$ composite ceramics has been studied as functions of heat-treatment temperature and amount of additive $SiO_2$ colloidal. Results showed that optimum amount of additive $SiO_2$ colloidal and coating of $SiO_2$ colloidal on crack could significantly increase the bending strength. The heat-treatment temperature has a profound influence on the extent of crack healing and the degree of strength recovery. The optimum heat-treatment temperature depends on the amount of additive $SiO_2$ colloidal. Crack healing strength was far the better cracked specimen with $SiO_2$ colloidal coating on crack surface. After heat treatment at the temperature 1,273 K in air, the crack morphology almost entirely disappeared by scanning prob microscope. At optimum healing temperature 1,273 K, the bending strength with additive $SiO_2$ colloidal 0.0 wt.% without $SiO_2$ colloidal coating recovered to the value of the smooth specimens at room temperature for the investigated crack sizes $100\;{\mu}m$. But that with $SiO_2$ colloidal coating increase up to 140 %. The amount of optimum additive $SiO_2$ colloidal was 1.3 wt.% and crack healed bending strength with $SiO_2$ colloidal coating increase up to 160 % to smooth specimen of additive $SiO_2$ colloidal 0.0 wt.%. Crack closure and rebonding of the crack due to oxidation of cracked surfaces were suggested as a dominant healing mechanism operating in $Si_3N_4$ composite ceramics.

Analysis on Enameled Container with Different Coating Thicknesses of Enamel in Pyrolysis Process (법랑공정에서 Enamel 도포두께에 따른 강판 용기의 변형 메커니즘 분석)

  • Park, Sang-Hu;Kang, Dong-Suk;Yu, Jae-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.67-74
    • /
    • 2020
  • To predict the thermal deformation of an oven cabinet during the enamel process, we propose a simple finite element analysis method comprising two steps: heating and cooling. To this end, the basic mechanical and thermal properties such as thermal expansion of the enamel and steel plate were experimentally studied, and the mechanical properties of four different stainless steel (SUS) plates were evaluated to select the target material for the oven at high temperature conditions from 400 ℃ to 700 ℃. In the first analysis step of the enamel process, the SUS plate was heated to 850 ℃ and was then thermally expanded without considering the enamel coating. Next, assuming the perfect bonding of two materials (enamel coating and metal plate), the enamel plate was allowed to cool to room temperature till 22 ℃. From the results of comparing the experimental and analytical data, we can make a conclusion that the proposed method can be applied to evaluate the thermal deformation of enamel products. Especially, the thermal deformation of the oven can be predicted with different enamel coating conditions, such as uniform and nonuniform coating thickness.

Numerical Study of Heat Transfer Characteristics and Thermal Stress for Enamel coating Heat Exchanger in High Temperature Firing Process (법랑코팅 열교환기에서 고온 소성공정에 따른 열전달 및 열응력에 관한 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung;Lee, Jong-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • The purpose of this study is to obtain basic data on the optimization of firing process conditions for enamel coating in chemical heat exchanger. The method of increasing the firing temperature in order to apply enamel coating to shell & tube type heat exchanger was examined. The temperature distribution of the heat exchanger in the firing kiln was numerically calculated using a commercial CFD program. The structural safety of the heat exchanger was confirmed by thermal stress analysis using the FSI method. Numerical analysis and experimental results show that there is a problem of safety due to temperature difference when the heat exchanger at room temperature is directly put into a firing kiln at 860℃. Therefore, a preheating process is need to reduce the temperature difference. As in Case2 with fewer firing steps, the first stage preheating temperature of 445℃and the second stage firing temperature of 860 ℃are considered to be most suitable.

Effect of Heat Treatment of powder on the Tribological Behavior of the Plasma Sprayed Zirconia Coating (분말 열처리가 지르코니아 용사코팅층의 마모특성에 미치는 영향)

  • 신종한;임대순;안효석
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.298-303
    • /
    • 2000
  • The 3 mol% yttria stabilized zirconia (3-Y PSZ) powder was heat treated at 50 0$^{\circ}C$ to evaporate the polymer binder and stabilize the tetragonal phase. The wear experiments were carried out on a ring-on-plate type reciprocating wear tester at selected temperatures with in the range room temperature to 600$^{\circ}C$ The results show that the heat treatment of powder decreases the wear rate due to the reduction of microcracks and pores in coatings and the stabilization of the tetragonal phase. Powder heat treatment enhanced the quality of the coating layer by removing remnant gases during coating process and the powder heat treatment at which tetragonal phase is stable diminished phase ratio of monoclinic. These two effects improved wear resistance characters.

  • PDF

Evaluation of wear chracteristics for $Al_{2}O_{3}-40%TiO_{2}$ sprayed on casting aluminum alloy (주조용 알루미늄합금의 $Al_{2}O_{3}-40%TiO_{2}$ 용사층에 대한 마멸특성 평가)

  • 채영훈;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.183-190
    • /
    • 1997
  • The wear behaviors of $Al_2O_3-40%TiO_2$ deposited on casting aluminum alloy(ASTM A356) by plasma spray against SiC ball have been investigated experimentally. Friction and wear tests are carried out at room temperature. The friction coefficient of $Al_2O_3-40%TiO_2$ coating is lower than that of pure $Al_2O_3$ coating(APS). It is found that low friction correspond to low wear and high friction to high wear in the experimental result. The thickness of $Al_2O_3-40%TiO_2$ coatings indicated the existence of the optimal coating thickness. It is found that a voids and porosities of coating surface result in the crack generated. As the tensile stresses in coating increased with the increased friction coefficient. The columnar grain of coating will be fractured to achieve the critical stress. It is found that the cohesive of splats and the porosity of surface play a role in wear characteristics. It is suggested that the mismatch of thermal expansion of substrate and coating play an important role in wear performance. Tensile and compressire under thermo-mechanical stress may be occurred by the mismatch between thermal expansion of substrate and coating. This crack propagation above interface is observed in SEM.

  • PDF

Preparation and application of silica-based coatings for corrosion protection of marine structures (해양구조물용 silica 기반 내해수성 코팅제의 제조 및 응용)

  • Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.137-142
    • /
    • 2021
  • In this study, the development of the room temperature curable silica-based coating compositions for anticorrosive and antifouling performance in marine environments was carried out. The marine (plant) structures with many exposed parts are operated in harsh marine environments such as strong ultraviolet rays, extreme temperature differences and salt water corrosion. Organic paints that are easily degraded under these environments and easily eroded by physical stimuli such as waves can not play a role properly. Dense ceramic coatings on marine structures provide careful protections even in saltwater environments due to their high hardness and rust resistance. Therefore, in the case of ceramic coatings, their use and application range in marine structures can be greatly improved due to their functional advantages. In the present study, silica-based coating compositions based on colloidal silica with silane coupling agents, curing salts, and ceramic fillers were developed, and their applications as protective coatings for corrosion protection and fouling prevention in seawater were also studied.

Effect of Oxide Particles Addition to Powder Coating on Corrosion Resistance of Steel Used as Marine Equipments (조선·해양 기자재용 강재의 내식성에 미치는 분체도장 중 산화물 첨가의 영향)

  • Park, Jin-seong;Ryu, Seung Min;Jeong, Yeong Jae;Kim, Sung Jin
    • Corrosion Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.100-107
    • /
    • 2020
  • The demand for powder-coated steel used in the marine industry is increasing owing to their superior corrosion resistance. However, the powder coatings used in commercial products can deteriorate easily by the penetration of brine. In an attempt to suppress brine penetration into the powder coating and significantly increase the corrosion resistance, three types of oxide particles were added to the coating. Electrochemical impedance spectroscopy tests in 3.5% NaCl solution were performed to evaluate the corrosion behaviors of the powder coating with oxide particles. The results showed that the addition of SiO2 particles to a powder coating severely decreased the corrosion resistance due to the easy detachment of agglomerated SiO2 particles with a coarse size from the coating layer. In contrast, the TiO2 and SnO2-added coatings showed better corrosion resistance, and the TiO2-added coating performed best in the test conducted at room temperature. However, conflicting results were obtained from tests conducted at a higher temperature, which may be attributed to the effective suppression of brine penetration by the fine SnO2 particles uniformly distributed in the coating.

A Development of the Coated Lead Sinker for Gill-net (자망어구용 코팅발돌의 개발)

  • An, Young-Il
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.22 no.4
    • /
    • pp.501-507
    • /
    • 2010
  • The ceramic contained paint was made to replace the lead sinker for gill-net with coated lead sinker. The ceramic contained paints were coated in various conditions on the lead sinker with 19g of weight and the optimal coating condition was studied. The adaptability of the coated lead sinker was checked through the anti durability test and fishing operation with gill-net. The case of "Main material 70 wt% + Urethane thinner 30 wt% (Main material 700 $m{\ell}$ + Thinner 300 $m{\ell}$)" showed the best in the coating characteristics depending on the combination ratio of the ceramic paint contained. The coated lead sinker dried at $100^{\circ}C$ inside oven was superior to the drying in the room temperature in its surface glossiness and anti durability and faster drying time than the one dried in normal temperature. The quadruple layers of coating on lead sinker with 4 times of dipping and drying application showed the super anti durability in the coating characteristics depending on the frequency of dipping. When press is applied to the coated lead sinker, the coated layer is not detached from the sinker. In addition, the coated lead sinker was not damaged or peeled at the fishing operation about 2 months in various depths within 50m and by the materials at the bottom (sand, stone and gravel stone) and it was in good condition.