• Title/Summary/Keyword: Roof span

Search Result 132, Processing Time 0.027 seconds

Fatigue experiments on steel cold-formed panels under a dynamic load protocol

  • Garcia-Palencia, Antonio J.;Godoy, Luis A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.3
    • /
    • pp.387-402
    • /
    • 2013
  • A dynamic load protocol has been used to experimentally simulate fatigue behavior in cold-formed metal panels with screwed connections under wind loading. The specific protocol adopted is an adaptation of SIDGERS, originally developed for non-metallic membranes, which is composed of levels each under increasing load values. A total of 19 tests were performed on 3.35 m long by 0.91 m wide panels, identified as Type B-wide rib and Type E, both with screw connections at the edge and at the center, thus conforming two-span specimens. In some configurations the panels were fixed at the valleys, whereas crest-fixed connections were also investigated. Reinforcing the connections by means of washers was also investigated to evaluate their efficiency in improving fatigue capacity. The experimental results show maximum load capacities in improved connections with washers of approximately twice of those with classical connections.

Structural Damage Evaluation of Large Span Roof Structure using Artificial Neural Network (인공신경망을 이용한 대공간구조물 구조손상평가)

  • Cho, Ja-Ock;Kim, Ji-Young;Yu, Eun-Jong;Kim, Mi-Jin;Kim, Dae-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.335-338
    • /
    • 2010
  • 구조물의 상태평가는 구조물 고유의 동특성을 분석함으로써 평가할 수 있다. 구조물은 태풍, 지진 및 기타 외적 환경 등에 의하여 손상이 발생하고 이러한 구조물의 손상은 강성의 변화로 이어져 구조물의 동특성에 변화를 일으킨다. 따라서 손상 발생 전후의 동적응답을 각각 계측한 후 구조물 식별(Structural System Idetification)을 통하여 고유진동수 및 모드형상을 추출하고 수학적인 기법을 사용하여 구조물을 구성하고 있는 개별 부재 혹은 부재 그룹의 강성을 비교함으로써 손상의 발생여부 및 손상정도를 추정할 수 있다. 본 연구에서는 지붕트러스 구조물에 대하여 손상평가를 수행하고 이를 검증할 수 있는 Mock-up 구조물을 설계 및 시공하였다.

  • PDF

ESTIMATION ALGORITHM FOR PHYSICAL PARAMETERS IN A SHALLOW ARCH

  • Gutman, Semion;Ha, Junhong;Shon, Sudeok
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.723-740
    • /
    • 2021
  • Design and maintenance of large span roof structures require an analysis of their static and dynamic behavior depending on the physical parameters defining the structures. Therefore, it is highly desirable to estimate the parameters from observations of the system. In this paper we study the parameter estimation problem for damped shallow arches. We discuss both symmetric and non-symmetric shapes and loads, and provide theoretical and numerical studies of the model behavior. Our study of the behavior of such structures shows that it is greatly affected by the existence of critical parameters. A small change in such parameters causes a significant change in the model behavior. The presence of the critical parameters makes it challenging to obtain good estimation. We overcome this difficulty by presenting the Parameter Estimation Algorithm that identifies the unknown parameters sequentially. It is shown numerically that the algorithm achieves a successful parameter estimation for models defined by arbitrary parameters, including the critical ones.

An Experimental and Numerical Study on the Behavior Characteristics of Single-span Plastic Greenhouse under Snow Load (적설하중 재하실험과 구조해석을 통한 단동 비닐하우스의 거동 연구)

  • Song, Hosung;Kim, Yu-Yong;Yu, Seok-Cheol;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.45-53
    • /
    • 2022
  • In this study, the loading test and structural analysis were performed on the snow load and the results were compared. The load plates were loaded on the roof surface of the model, and structural analysis was performed under the same conditions. The result of loading test, the maximum displacement was observed in the center of the top, and the maximum stress was observed near the bottom point. Displacement and stress were found to have a high linear relationship with the load. Comparing the structural analysis results with the loading test results, the maximum displacement difference is 4.5% and the maximum stress difference is 10.2%. It is expected that closer results can be derived if the boundary conditions for the longitudinal direction of the model are clarified during experiments and analysis.

Yield Increase and Energy Saving Effect on Plastic Greenhouse Covered with Polyolefin Film (PO필름 피복 온실의 수량 증대 및 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kim, Jin Gu;Lee, Jae Han;Kang, Youn Koo;Lim, Mi Young;Kim, Hye Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.428-439
    • /
    • 2020
  • This study was carried out to investigate the effect of PO film on the increase of crop yield and energy saving through PO and PE film greenhouse application and comparison test. As a experimental greenhouse, two single span greenhouses (1-1 W) and two double span greenhouses (1-2 W) were used. During winter season, PO film (0.15 mm outer layer, 0.10mm inner layer) was used as a covering material of greenhouse in double layers for double-span (B15) and single-span(B21), and PE film used for double-span (B15), and single-span (B23) as a control. The experimental vegetable was tomato(Solanum lycopersicum L.) cultivated in soil and the cultivar of that was 'Happiness'. That was cultivated from December 3, 2019 to April 30, 2020. The temperature at night inside the greenhouse was maintained at 15℃, and the side and roof windows were opened to maintain 23 ~ 24℃ during the day. As a result, this study showed that the yield in single-span greenhouse(B21) covered with a PO film increased 20% and that in double-span greenhouse (B16) increased by 9% compared to the greenhouse covered with a PE film (B23, B15). Fuel consumption of the single-span greenhouse (B21) with the cover of PO film was reduced by 12.4% and that of double-span greenhouse was done by 11.5% compared to that of the PE film greenhouse (B23, B15) without any difference between them in growing state.

Analysis on Heat Loss of Single-span Greenhouse Using Small-scaled Wind Tunnel (소형풍동을 이용한 단동 비닐온실의 열손실 분석)

  • Kim, Young Hwa;Kim, Hyung kow;Lee, Tae suk;Oh, Sung sik;Ryou, Young sun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.1
    • /
    • pp.73-79
    • /
    • 2020
  • The objective of this study is to analyze the heat transfer loss of covering materials in a single-span plastic greenhouse under the steady-state wind environment. To achieve this objective, the following were conducted: (1) design of a small-scaled wind tunnel (SCWT) to analyze heat losses of the greenhouse and its performance; (2) determination of the overall heat transfer coefficient (OHTC) for the covering materials using a small-scaled greenhouse model. The SCWT consists of the blowing, dispersion, steady flow, reduction and testing areas. Each part of the SCWT was customized and designed to maintain air flow at steady state and to minimize the variances in the SCWT test. In this study, the OHTCs of the covering materials were calculated by separating each with the roof, side wall, front and back of the small-scaled greenhouse model. The results of this study show that the OHTC of the roof increases as wind speed increases but the zones in which the increase rate of the OHTC decreased, were distinguished by wind tunnel wing speed of 2 ms-1. For the side wall, the increase rate of the OHTC was particularly higher in the 0-1 ms-1 zone.

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Consideration on design procedure of room-and-pillar underground structure part II: selection of shape to design supports (주방식 지하구조물의 설계 방법 고찰 Part II: 지보 설계 필요 단면 검토)

  • Lee, Chulho;Hur, Jinsuk;Hyun, Younghwan;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.497-506
    • /
    • 2014
  • In this study, analysis results described in the companion paper was used to determine shapes of room-and-pillar underground structure. To select optimized shapes, structural stability, space applicability and vehicle applicability were considered. In the structural stability step, ratio between strength and stress of the pillar and the critical strain at the roof span were adopted. The space applicability was used to retain the sufficient space of underground structure as its purpose is for human activity. The vehicle applicability was used to consider a radius for rotation of construction equipments in the room-and-pillar underground structure. From the given procedure in this study, proper shapes of rock pillar and room can be selected to design supports at the pillar and roof.

Consideration on design procedure of room-and-pillar underground structure part I: parametric study (주방식 지하구조물의 설계 방법 고찰 Part I: 매개변수 연구)

  • Lee, Chulho;Hwang, Jedon;Kim, Eunhye;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • In this study, in order to suggest the design method for supports in the room-and-pillar underground structure, the case study was carried out. In the case study, shape of rock pillar and room was mainly considered. From the analysis, a displacement at the roof, the maximum principle stress and plastic state were examined. To optimize variables in the case study, cases from the Seoul metro station were analyzed, then a target depth of the underground structure and ground conditions were determined. And the height of rock pillar and room were chosen from the assumed purpose of underground space, i.e. living/office and warehouse. Total cases of analysis was 180 cases including 3 types of ground condition, 5 types of rock pillar and 6 types of roof span. It is expected that results from analysis can be used to determine the installation of support in room-and-pillar underground structure with stability, utilization efficiency of underground space and applicability of vehicles.