• 제목/요약/키워드: Roof side rail

검색결과 8건 처리시간 0.02초

핫블로우 포밍을 이용한 고강도 알루미늄 루프 사이드 레일 설계 (Design of Roof Side Rail by Hot Blow Forming using High Strength Aluminum)

  • 김민기;이정흠;고대철
    • 소성∙가공
    • /
    • 제32권6호
    • /
    • pp.311-320
    • /
    • 2023
  • Recently, lightweight of automotive parts has been required to solve environmental problems caused by global warming. Accordingly, research and development are proceeded on manufacturing of parts using aluminum that can replace steel for lightweight of the automotive parts. In addition, high strength aluminum can be applied to body parts in order to meet both requirements of lightening and improving crash safety of vehicle. In this study, hot blow forming of roof side rail is employed to manufacturing of the automotive parts with high strength aluminum tube. In hot blow forming, longer forming times and excessive thinning can be occurred as compared with conventional manufacturing processes. So optimization of process conditions is required to prevent excessive thinning and to uniformize thickness distribution with fast forming time. Mechanical properties of high strength aluminum are obtained from tensile test at high temperature. These properties are used for finite element(FE) analysis to investigate the effect of strain rate on thinning and thickness distribution. Variation of thickness was firstly investigated from the result of FE analysis according to tube diameter, where the shapes at cross section of roof side rail are compared with allowable dimensional tolerance. Effective tube diameter is determined when fracture and wrinkle are not occurred during hot blow forming. Also FE analysis with various pressure-time profiles is performed to investigate the their effects on thinning and thickness distribution which is quantitatively verified with thinning factor. As a results, optimal process conditions can be determined for the manufacturing of roof side rail using high strength aluminum.

복합재료 경전철의 차체구조 해석 (A Structural Analysis on the Light Rail Vehicle Body with Composite Material)

  • 이영신;김재훈;이호철;길기남;박병준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 추계학술대회 논문집
    • /
    • pp.437-446
    • /
    • 1999
  • The structural behavior of the composite material light rail vehicle body are investigated. Composite material is very useful for light rail vehicle structure due to its high specific strength and lightweight characteristics. The main carbody is made of aluminum alloy. The side wall and roof with composite panels can reduce total vehicle weight about 2000kg. In addition, with the lower density of the foam, enhances lightness in the panel and to save the operation expenses. The finite element analysis code, ANSYS is used to evaluate the stability of the body structure under the various load conditions.

  • PDF

FMVSS 226 Ejection Mitigation Impact Test의 시험품 단순화에 따른 인자들의 상관 관계에 대한 연구 (Study on Ejection Mitigation Impact Test about correlation between Vehicle and B.I.W(Body In White) Condition)

  • 강문철;신현학;오형준
    • 자동차안전학회지
    • /
    • 제7권4호
    • /
    • pp.16-19
    • /
    • 2015
  • FMVSS226 Ejection Mitigation Impact Test is usually performed by real vehicle. But it is necessary to perform the test using by Reinforced B.I.W. with considering vehicle developing timing and roof rail airbag (RRAB) supplier capacity. We sometimes need tendency (quick data) instead of slow accurate data to fix RRAB design as proper timing. Test with Reinforced B.I.W. is helpful saving time and cost. But it should be confirmed how much different between vehicle conditioned test result and Reinforced B.I.W. conditioned test result. There are some points to be improved even in the test with vehicle. Understanding of deviation of Reinforced B.I.W. conditioned test result from vehicle conditioned test result is needed to get benefits with using Reinforced B.I.W. conditioned in the test.

레이저 용접 판재의 T형 단면에의 적용 및 성형성 연구 (Study on the Forming of Tailor Welded T-Section)

  • 김헌영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2000년도 춘계학술대회논문집
    • /
    • pp.159-162
    • /
    • 2000
  • Wrinkles and shape distortions are generated during the forming of B-pillar(or center pillar) which is a component of the automobile side-frame. The stretch flanging modes at the joining part of the B-pillar and the roof-rail or the side-still give rise to forming problems when taior-welded blanks are applied to the side-frames. The authors simplified B-pillar lower part to T shaped section to investigate the forming behaviors. Three of die step locations and two of blank types were tested to show the effects of weld line locations and edge conditions on he forming of tailor welded blanks. The heights of body wrinkles and the strain distribution in the stretch flanged area were measured and compared.

  • PDF

고무차륜형 AGT 경량전철 차량용 알루미늄 차체의 개발 (Development on the Aluminum Carbody for Rubber-Tired AGT Vehicle)

  • 김연수;박성혁;백남욱;김동승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1118-1123
    • /
    • 2003
  • Based on the design requirements(size, strength, structure, weight, and etc.) for the rubber-tired AGT vehicle, carbody made of aluminum alloy is designed. The analysis of strength and stiffness is performed in the designed carbody, which results in the modification for optimal shapes and structures. It consists of a under frame, side frame, roof frame, end frame and forehead frame. After the carbody manufactured, tests are performed, which are vertical load test, longitudinal compressive load test, twisting load test, twisting natural frequency measurement, bending natural frequency measurement and 3 points supporting test. Results of them can guarantee a structural safety.

  • PDF

도시철도차량의 구조체 처짐량에 대한 해석 방안 연구 (A Study on Analysis Method for Structure Deflection of Electric Multiple Units)

  • 정종덕;편장식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.653-658
    • /
    • 2009
  • This paper describes the structural deflection analysis method and result of EMU(Electric Multiple Units). During manufacturing of rail passenger coaches, the underframe is assigned a camber before it is integrated with other major assemblies of shell such as the side panel, the end panel and the roof. The camber of the positive deflection given intentionally to compensate for the sagging so that it remains straight at the maximum load. But some manufacturers have insisted there has no relationship between the camber and the safety or life cycle and they expect to reduce a manufacturing cost without a camber. So this study analyzes whether the camber influences on the safety or life cycle of EMU structure under a full load and regular driving condition. The structural dynamics model for a railway vehicle is introduced.

  • PDF

패널굴절방식 환기창 온실의 환기효과 (Ventilation Effect of the Greenhouse with Folding Panel Type Windows)

  • 김진영;이시영;김현환;전희;윤익학
    • 생물환경조절학회지
    • /
    • 제11권1호
    • /
    • pp.5-11
    • /
    • 2002
  • 본 연구는 여름 같은 고온기나 외부온도가 높지 않아도 시설내 온도가 많이 상승하는 봄 .가을 같은 시기에 온실내 고온 공기를 외부로 신속하게 유출시켜 강제환기를 사용하지 않고도 온실내부의 환경을 조절 할 수 있는 새로운 자연 환기창을 개발하는데 목적을 두고 수행하였다 패널굴절방식 측창은 지면에 가까운 쪽의 패널 하부에 절점을 두고 패널 상부가 측고 부위로부터 가이드 레일을 따라 하향하도록 구성하여 창이 개방되게 하였고, 천창은 측고 부위에 절점을 두고 용마루 쪽의 패널 상부가 가이드 레일을 따라 경사진 지붕면을 따라 하향하도록 구성하여 고온 공기층이 정체되어 있는 온실 상부인 측고 부위와 용마루 부위가 개방되도록 하였다. 굴절 패널의 상부 개방거리는 X=L(1-cos$\theta$)로 나타낼 수 있고 측면 개방 거리는 Y=L/2$\times$sin$\theta$로 나타낼 수 있다. 천창 개방시간은 4분 20초 소요되었으며 개방 시작한 2분 후부터 온도가 하강하기 시작하였고, 완전 개방 2분 후부터는 외기온과의 온도차 3~4$^{\circ}C$정도를 유지하면서 평형상태를 유지하였다. 패널굴절방식 환기창 온실의 환기성능은 체적환기량이 22.3-94.3m$^3$.m$^{-2}$ .h$^{-1}$이었으며, 환기 횟수는 15.2~39.3회.h$^{-1}$로 나타나 일반적인 연속형 천창의 10~15회.h$^{-1}$ 정도에 비해 환기효과가 높은 것으로 나타났다. 그리고 벤로형 온실과의 천창개폐시 온도하강을 비교하였을 때 환기효과가 2배 이상 높은 것으로 판단되었다.$_{r}$", $\mu$$_{r}$′) and the dielectric loss ($\varepsilon$$_{r}$"/$\varepsilon$$_{r}$′) were increased. It was caused that the absorption characteristics of the absorber were improved. The conduction loss and magnetic loss were expected to be occurred together because two matching frequencies were shown with carbon addition. It was confirmed that the matching frequency of the microwave absorber could be controlled by controlling heat-treatment temperatures and carbon additions.ons.tions.加的)으로 되거나 과가황(過加黃)이 될 우려가 있는 제조공정(製造工程)에서는 흔히들 이 방법(方法)을 무시(無視)하고 있다. 여기서 강조(强調)해 두어야 할 것은 항상 제품(製品)의 외부(外部)를 완전(完全)히 가황(加黃)시킬 필요(必要)는 없다는 것이다. 다공성(多孔性)이나 기포생성(氣泡生成)을 조장(助長)하는 불량가황상태(不良加黃狀態)와 표면(表面)에서의 과가황상태간(過加黃狀態間)의 균형(均衡)을 취(取)해 줘야 하는데 물론(勿論) 이때는 가황시간(加黃時間)을 단축(短縮)시켜야 한다는 경제적(經濟的)인 측면(側面)도 아울러 고려(考慮)해야 한다

Evaluation on Low-floor Bus Package Layout from the Perspective of Universal Design

  • Kim, Sun-Woong;Kim, Ji-Yeon;HwangBo, Hwan;Hwang, Bong-Ha;Moon, Yong-Joo;Ji, Young-Gu
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.659-669
    • /
    • 2011
  • Objective: The aim of this study is to suggest a package layout guideline for low-floor bus by interview with passengers and observations of their behavior. Background: Increasing attention has been introduced the low-floor bus to be more suitable for use by transportation handicapped. Complex issues are involved in providing comfortable services to all people. We are going to suggest package layout guidelines for more comfortable and suitable travel to all people. Method: The two times of survey and video observation sessions were conducted on low-floor buses in Seoul; (1) a finding of potential issues in the first session, (2) a confirming of issues from the last session. Results: The three of major issues were founded in this study; (1) difficulties in supporting body when standing, (2) difficulties in sitting on front wheel pan seat, (3) difficulties in passing through the aisle. Conclusion: There were clear differences between public and transportation handicapped in using some tools which are used for support body such as roof hand rails, side hand rails, and hand rail rings. Some of design problems were founded to improve from the perspective of ergonomics and universal design. Such differences and design guidelines have to be considered in bus design as well as commercial vehicle. Application: The proposed design guidelines can be used to development of low-floor bus and other public transportations.