• Title/Summary/Keyword: Rolling of ships

Search Result 59, Processing Time 0.023 seconds

A Study on the Fabrication of a Fiber Optic Gyrocompass for Ships (선박용 광섬유 자이로콤파스의 제작에 관한 연구)

  • 이석정;배정철;홍창희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.04a
    • /
    • pp.56-63
    • /
    • 1998
  • A fiber optic gyrocompass for ships was made in consideratino of cost, reliability and convenience. In order to reduce the cost a cheaper fiber sensor was used inthis system. The accuracy was increased by replacing a 180ppr-slit disk with a 1000ppr-encoder. The reliability was also increased by improving the signal processing electronics. This system was made as a heading angle display type for convenience. Although more inexpensive FOG than that of the previous system was used , the accuracy of this compass was increased about 0.5$^{\circ}$. Moreover, it has a very fast warm-up time of about 5minutes. Therefore, this compass can show the prospect of proactical use on ships if it is installed ona stabilizer against the dynamic motion such as rolling and pitching.

  • PDF

A Study about Analysis of Cause of several Capsized Sea Accidents by Rolling Motion Spectrum (Rolling Motion Spectrum 에 의한 해난 발생의 원인분석에 관한 연구)

  • 윤점동;이동섭
    • Journal of the Korean Institute of Navigation
    • /
    • v.13 no.2
    • /
    • pp.23-36
    • /
    • 1989
  • Marine casualities in the high sea are mainly classified into the breakage of hull and capsize , of which the latter occurs frequently to a small craft and container vessels by extreme rolling. The aim of this study is to develop shiphandling techniques for the prevention of ship's large rolling by way of evaluating dangerous degree of rolling in heavy weather. In this study, rolling motion is analized by using statistical method as follow : (1) 8 sample ships is presented for calculation. (2) Analized sea state are Beaufort scale 7 and 10 (wind velocity 30kts and 50kts respectively) and significant wave height is put as 5.2m and 11.2m. (3) The formula recommended by International Towing Tank Conference (ITTC) is used to calculated the wave spectrum. The results of this study are as follow : The results of this study are as follow : (1) Most of the vessels with beam of 20 meters or less was found to be capized in the waves abeam under the sea condition of Bearfort scale7(30kts). (2) For the vessels range 20m to 30m was found safe under the sea conditions of Bearfort scale 7(30kts) and imminent danger under the sea condition of Beaufort scale 11(50kts). (3) It is proved that any vessel could be capsized by heavy rolling regardless of vessel's size whenever the motion is synchronized with waves abeam. This study concludes that the navigator, especially at night , must anticipate the exact wave direction, referring to the wether report and coastaline, not to lay the vessel in the serial wave abeam.

  • PDF

Design of a Pendulum-type Anti-rolling System for USSV and Verification Based on Roll Damping Coefficient (무인반잠수정의 진자식 횡동요 저감 장치 설계 및 감쇠계수 기반 검증)

  • Jin, Woo-Seok;Kim, Yong-Ho;Jung, Jun-Ho;Lee, Kwangkook;Kim, Dong-Hun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.550-558
    • /
    • 2019
  • The roll motion of a general vessel, which is more influenced by resonance as compared to other motions, adversely affects the passenger and hull. Therefore, reducing the roll motion through an anti-rolling system is critical, and most ships use various devices such as anti-rolling tanks, bilge keels, and fin stabilizers to accomplish this. In this study, a simplified model is developed for the application of an anti-rolling device for unmanned semi-submersible vessels. The applied anti-rolling device is installed on the stern and stem of a ship using a pair of servo motors with added weight, and the motor is controlled through the Arduino. The moment of the motor is designed and implemented based on a mathematical model such that it is calculated through the restoring force according to the heel angle of the ship. The performance of the proposed system was verified by utilizing the roll damping coefficient calculated by the free-roll decay test and logarithmic decrement method and was validated by a towing tank test. The system is expected to be used for unmanned vessels to perform sustainable missions.

Coupled Motion Simulation of the Mobile Harbor and Anti-Rolling Devices in Waves

  • Yoon, Hyeon-Kyu;Kang, Joo-Nyun;Lew, Jae-Moon;Moon, Seok-Joon;Chung, Tae-Young
    • Journal of Navigation and Port Research
    • /
    • v.34 no.4
    • /
    • pp.271-279
    • /
    • 2010
  • The Mobile Harbor(MH) is a new transportation platform that can load and unload containers to and from very large container ships in the sea. This loading and unloading by crane can be performed with only very small movements of the MH in waves because MH is operated outside of the harbor. For this reason, an anti-rolling tank(ART) and an active mass driving system(AMD) were designed to reduce MH's roll motion, especially at the natural frequency of MH. In the conceptual design stage, it is difficult to confirm the design result of theses anti-rolling devices without modeling and simulation tools. Therefore, the coupled MH and anti-rolling devices' dynamic equations in waves were derived and a simulation program that can analyze the roll reduction performance in various conditions, such as sea state, wave direction, and so on, was developed. The coupled equations are constructed as an eight degrees of freedom (DOF) motion that consists of MH's six DOF dynamics and the ART's and AMD's control variables. In order to conveniently include the ART's and AMD's control dynamics in the time domain, MH's radiated wave force was described by an impulse response function derived by the damping coefficient obtained in the frequency domain, and wave exciting forces such as Froude-Krylov force and diffraction force and nonlinear buoyancy were calculated at every simulation time interval. Finally, the roll reduction performances of the designed anti-rolling devices were successfully assessed in the various loading and wave conditions by using a developed simulation program.

Hydrodynamic Performance of a 2,500-ton Class Trimaran

  • Kang, kuk-Jin;Lee, Chun-Ju;Kim, Sun-Young;Park, Yun-Rak;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.2
    • /
    • pp.23-36
    • /
    • 2002
  • This paper describes the powering, seakeeping and maneuvering performances for a 2,500-ton class trimaran. Influence of the side-hull forms and location of those in longitudinal and transverse direction to resistance performance was systematically investigated by a series of model tests and numerical calculations. It was found that the longitudinal location of side-hulls was the most influential design parameter to the resistance performance of the trimaran and the optimum location of side-hull depends on ship speeds. When the side-hull stem is located near the primary wave hollow generated by the main hull, the trimaran shows the best resistance performance. Powering performance of the trimaran is superior to those of similar mono-hull ships. Seakeeping model tests for the trimaran were executed and the results were compared with the theoretical results of a similar mono-hull ship. Generally speaking, seakeeping performance of the trimaran is superior to that of a mono-hull ship. In particular, pitching and rolling performance of the trimaran is excellent, which is due to the increased length and breadth. Maneuvering model tests using a HPMM equipment were executed to evaluate the maneuvering performance of the trimaran. Maneuvering simulation was performed using the maneuvering coefficients from the model tests. The results show that the control ability of heading angle and the direction keeping stability of the trimaran is excellent, even though the turning performance is rather worse compared to those of a similar mono-hull ship.

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 해석)

  • Choi, Yoon-Rak;Kim, Jin-Ha;Kim, Young-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

The Development of a Balancing Control System for the Anti-Rolling Rail of a Delivery Ship (용달선의 횡 동요를 억제하기 위한 곡선레일의 수평유지장치 개발)

  • Byun, J.H.;Yeo, D.J.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2004
  • A delivery ship is used to handle the cargo with the crane to/from the ships. The ship is inclined in the direction of a cargo which is hung on a crane. In this case, a arc shaped rail should be in the equilibrium state to get good anti rolling performance. In this study, a device and control algorithm are developed to take accurate and quick equilibrium of the rail. The device is composed of a hinged immovable support and two screw jacks. And the control algorithm demands two controllers. One controller is designed such that the screw jack 1 and 2 follow the position reference signal generated by a tilt sensor. The other controller of two degree of freedom is designed to remove the synchronous error occurred between jack 1 and jack 2. The simulation results show that the desirable control performance is achieved.

  • PDF

A Characteristics of Non-linear Rolling of Ships in a Narrow Band Sea (협대역 스펙트럼을 가지는 해상에서의 선박 횡요의 특성)

  • Sun-Hong Kwon;Yun-Cheol Na;Dong-Dae Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.30 no.2
    • /
    • pp.37-42
    • /
    • 1993
  • In this study of statistical characteristics of roll response of ships to narrow band exciting moment generated by passing white noise through a linear filter is investigated. The parameters of linear filler are determined by comparing the results of exciting moment generated through filler equation tilth those evaluated from JONSWAP spectrum. The statistical results of the roll response of shops are presented.

  • PDF

Parametric roll of container ships in head waves

  • Moideen, Hisham;Falzarano, Jeffrey M.;Sharma, S.Abhilash
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.239-255
    • /
    • 2012
  • Analysis of ship parametric roll has generally been restricted to simple analytical models and sophisticated time domain simulations. Simple analytical models do not capture all the critical dynamics while time-domain simulations are often time consuming to implement. The model presented in this paper captures the essential dynamics of the system without over simplification. This work incorporates various important aspects of the system and assesses the significance of including or ignoring these aspects. Special consideration is given to the fact that a hull form asymmetric about the design waterline would not lead to a perfectly harmonic variation in metacentric height. Many of the previous works on parametric roll make the assumption of linearized and harmonic behaviour of the time-varying restoring arm or metacentric height. This assumption enables modelling the roll motion as a Mathieu equation. This paper provides a critical assessment of this assumption and suggests modelling the roll motion as a Hills equation. Also the effects of non-linear damping are included to evaluate its effect on the bounded parametric roll amplitude in a simplified manner.