• 제목/요약/키워드: Rolling element bearing

검색결과 70건 처리시간 0.03초

PSO를 이용한 수동형 자기 베어링의 최적 설계 (Optimal Design for Passive Magnetic Bearing Using PSO)

  • 정현석;주영훈
    • 전기학회논문지
    • /
    • 제59권12호
    • /
    • pp.2319-2323
    • /
    • 2010
  • The existing contact-type bearings using rolling or sliding require continuous maintenance due to abrasion caused by friction and are not suitable for high-speed rotation and slimming. A magnetic bearing without contact can overcome such problems but the performance depends on the allocation of magnets and the structure of bearings. This paper proposes a method designing parameters of a passive magnetic bearing to improve levitation force. The proposed method employs Halbach array as the allocation of magnets, uses particle swam optimization to determine the structure of bearings. The numerical experiment shows that the levitation force is improved by the proposed method compared with the existing one using finite element analysis.

AE를 이용한 저어널 베어링에서의 윤활유 이물질 혼입의 영향 감시 (Monitoring of Lubrication Conditions in Journal Bearing by Acoustic Emission)

  • 윤동진;권요양;정민화;김경웅
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1993년도 제18회 학술대회 초록집
    • /
    • pp.77-84
    • /
    • 1993
  • Systems with journal bearings generally operate in large scale and under severe loading conditions such as steam generator turbines and internal combustion engines, in contrast to the machineries using rolling element bearings. Failure of the bearings in these machineries can result in the system breakdown. To avoid the time consuming repair and considerable economic loss, the detection of incipient failure in journal bearings becomes very important. In this experimental approach, acoustic emission monitoring is employed to the detection of incipient failure caused by intervention of foreign particles most probable in the journal bearing systems. It has been known that the intervention of foreign materials, insufficient lubrication and misassembly etc. are principal factors to cause bearing failure and distress. The experiment was conducted under such designed conditions as inserting alumina particles to the lubrication layer in the simulated journal bearing system. The results showed that acoustic emission could be an effective tool to detect the incipient failure in journal bearings.

  • PDF

100,000 rpm 운전용 원심분리기 로터-베어링 시스템의 회전체동역학 해석 (Rotordynamics of a Centrifuge Rotor-Bearing System for 100,000 rpm Operation)

  • 이안성;김영철;박종권
    • 소음진동
    • /
    • 제8권3호
    • /
    • pp.450-456
    • /
    • 1998
  • A rotordynamic analysis is performed with a centrifuge rotor-bearing system for the raing speed of 100,000 rpm. The system is composed of a centrifuge rotor(or simply the rotor), flexible shaft, motor rotor and shaft, and two support rolling element bearings of the motor shaft. Design goals are to achieve wide separation margins of critical speeds and favorable unbalance responses of the rotor at the associated critical speeds. The latter requirements are especially important as the system crosses multiple numbers of critical speeds and as the system may not have enough separaton margins around the rating speed. As the system adopts an extra-flexible shaft, it is shown that the rotor has satisfactory small unbalance responses over higher criticals while having an unsatisfactory large one at the first critical. To supress this a bumper ring or guide bearing needs to be installed at a suitable location of the flexible shaft. It is also shown that even with the flexible shaft the dynamics of the motor must be incoporated into the full system model to accurately identify the fourth critical speed, which is close to the rating speed, and higher ones. The analysis is based on the finite element method.

  • PDF

Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines

  • Shen, Changqing;Wang, Dong;Liu, Yongbin;Kong, Fanrang;Tse, Peter W.
    • Smart Structures and Systems
    • /
    • 제13권3호
    • /
    • pp.453-471
    • /
    • 2014
  • The fault diagnosis of rolling element bearings has drawn considerable research attention in recent years because these fundamental elements frequently suffer failures that could result in unexpected machine breakdowns. Artificial intelligence algorithms such as artificial neural networks (ANNs) and support vector machines (SVMs) have been widely investigated to identify various faults. However, as the useful life of a bearing deteriorates, identifying early bearing faults and evaluating their sizes of development are necessary for timely maintenance actions to prevent accidents. This study proposes a new two-layer structure consisting of support vector regression machines (SVRMs) to recognize bearing fault patterns and track the fault sizes. The statistical parameters used to track the fault evolutions are first extracted to condense original vibration signals into a few compact features. The extracted features are then used to train the proposed two-layer SVRMs structure. Once these parameters of the proposed two-layer SVRMs structure are determined, the features extracted from other vibration signals can be used to predict the unknown bearing health conditions. The effectiveness of the proposed method is validated by experimental datasets collected from a test rig. The results demonstrate that the proposed method is highly accurate in differentiating between fault patterns and determining their fault severities. Further, comparisons are performed to show that the proposed method is better than some existing methods.

볼 베어링을 이용 Linear Motion Guide의 동적 특성에 관한 연구 (Dynamic Characteristics of Linear Motion Guide Supported by Rolling Ball Bearings)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.326-331
    • /
    • 2004
  • The linear motion (LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been used widely to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analysis. Linear analysis is accomplished by Lagrange equation and finite element method. And another trial that is nonlinear analysis about one mode of LM guide(bouncing mode) from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

  • PDF

볼 베어링을 사용하는 선형 운동 가이드의 동적 특성 (Dynamic Characteristics of Linear Motion Supported by Rolling Ball Bearings)

  • 최재석;이용섭;김윤영;이동진;이성진;유정훈
    • 한국소음진동공학회논문집
    • /
    • 제14권9호
    • /
    • pp.868-876
    • /
    • 2004
  • The linear motion(LM) guide using ball bearing has many advantages compared with conventional sliding guides. Therefore, LM guide using ball bearing has been widely used to increase the accuracy of the position of a system. This research investigates dynamic characteristics of LM guide through mainly linear analyses. Linear analysis is accomplished by Lagrange equation and the finite element method. And another trial that performs nonlinear analysis about one mode(bouncing mode) of LM guide from Hertzian contact theory is accomplished in the latter half of this research. Through nonlinear analysis we could observe the softening characteristic due to the Hertzian contact nonlinearity.

무인기용 소형 가스터빈 엔진에 대한 포일 공기 베어링 적용 연구 (Application of Foil Air Bearing to Small Gas Turbine Engine for UAV)

  • 김경수;이시우;김승우;이인
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제21회 추계학술대회 논문집
    • /
    • pp.261-266
    • /
    • 2003
  • 포일 베어링은 공기의 점성과 포일 형태의 구조물을 이용하는 비접촉 베어링으로서, 구름베어링에 비하여 별도의 윤활장치가 필요 없고, 무한수명이 가능하며, 구름베어링을 사용할 수 없는 초고속 회전체와 50$0^{\circ}C$ 이상의 고온 환경에도 적용이 가능하다는 장점이 있다. 최근에는 전통적으로 널리 사용되어 왔던 소형 터보기기 분야뿐만 아니라, 소형 가스터빈 엔진과 같이 극한 온도 조건에서도 작동할 수 있는 포일 베어링에 대한 연구가 활발하게 진행되고 있다. 본 논문에서는 포일 공기 베어링 원리에 대한 소개와 함께, 현재 당사에서 볼베어링을 사용하여 개발 중인 65마력급 무인기용 터보샤프트 엔진의 고온부 베어링으로 적용하기 위한 가능성 연구를 수행하였다.

  • PDF

고효율 복합형 진공펌프의 로터다이나믹 해석 (A Rotordynamics Analysis of High Efficiency and Hybrid Type Vacuum Pump)

  • 김병옥;이안성;노명근
    • 한국소음진동공학회논문집
    • /
    • 제17권10호
    • /
    • pp.967-975
    • /
    • 2007
  • A rotordynamic analysis was performed with a dry vacuum pump, which is a major equipment in modern semiconductor and LCD manufacturing processes. The system is composed of screw rotors, lobes picking air, helical gears, driving motor, and support rolling element bearings of rotors and motor. The driving motor-screw rotor system has a rated speed of 6,300 rpm, and was modeled utilizing a rotordynamic FE method for analysis, which was verified through 3-D FE analysis and experimental modal analysis. As loadings on the bearings due to the gear action were significant in the system considered, each resultant bearing load was calculated by considering the generalized forces of the gear action as well as the rotor itself. Each resultant bearing loading was used in calculating each stiffness of rolling element bearings. Design goals are to achieve wide separation margins of lateral and torsional critical speeds, and favorable unbalance responses of the rotor in the operating range. Then, a complex rotordynamic analysis of the system was carried out to evaluate its forward synchronous critical speeds, whirl natural frequencies and mode shapes, unbalance responses under various unbalance locations, and torsional interference diagram. Results show that the entire system is well designed in the operating range. In addition, the procedure of rotordynamic analysis for dry vacuum pump rotor-bearing system was proposed and established.

이산 설계변수를 포함하고 있는 자동차용 휠 베어링 유닛의 설계방법 (Design Methodology of Automotive Wheel Bearing Unit with Discrete Design Variables)

  • 윤기찬;최동훈
    • 한국자동차공학회논문집
    • /
    • 제9권1호
    • /
    • pp.122-130
    • /
    • 2001
  • In order to improve the efficiency of the design process and the quality of the resulting design, this study proposes a design method for determining design variables of an automotive wheel-bearing unit of double-row angular-contact ball bearing type by using a genetic algorithm. The desired performance of the wheel-bearing unit is to maximize system life while satisfying geometrical and operational constraints without enlarging mounting spae. The use of gradient-based optimization methods for the design of the unit is restricted because this design problem is characterized by the presence of discrete design variables such as the number of balls and standard ball diameter. Therefore, the design problem of rolling element bearings is a constrained discrete optimization problem. A genetic algorithm using real coding and dynamic mutation rate is used to efficiently find the optimum discrete design values. To effectively deal with the design constraints, a ranking method is suggested for constructing a fitness function in the genetic algorithm. A computer program is developed and applied to the design of a real wheel-bearing unit model to evaluate the proposed design method. Optimum design results demonstrate the effectiveness of the design method suggested in this study by showing that the system life of an optimally designed wheel-bearing unit is enhanced in comparison with that of the current design without any constraint violations.

  • PDF

반경하중을 받는 결함 볼베어링의 진동해석에 관한 연구 (A Study on the Vibration Analysis of Multi-components Damaged Ball Bearing under Radial Load)

  • 김영주;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.35-45
    • /
    • 1988
  • In this paper an experimental review of condition monitoring method using time domain vibration signals and statically measured wave forms of a multi-components damaged ball bearing is presented first time. Many investigators studied already about vibration characteristics of a single point damaged ball bearing but they did not make efforts to verify vibration phenomena of a multi-components damaged one. Even in case of a tripple components damaged (i.e, outer race, inner race and rolling element) one, the high frequency resonance technique (HERT) and the displacement time domain technique can be also used for its fault detection. According to experimental results undertaken a static displacement measuring method, the defect locations of components can be proposed confidently with simple calculation of the rotating angles of each component.

  • PDF