• Title/Summary/Keyword: Rolling Temperature

Search Result 522, Processing Time 0.052 seconds

Annealing Characteristics of Oxygen Free Copper Sheet Processed by Differential Speed Rolling (이주속압연된 무산소동 판재의 어닐링 특성)

  • Lee, Seong-Hee;Yoon, Dae-Jin;Euh, Kwangjun;Kim, Su-Hyun;Han, Seung-Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.1
    • /
    • pp.77-84
    • /
    • 2010
  • Annealing characteristics of an oxygen free copper (OFC) processed by differential speed rolling (DSR) were investigated in detail. An OFC sample with a thickness of hum was rolled to 35% reduction at ambient temperature without lubrication, varying the differential speed ratio from 1.0:1 to 2.2:1, and then annealed for 0.5h at various temperatures from 100 to $400^{\circ}C$. Different recrystallization behavior was observed depending on the differential speed ratio, especially in the case of annealing at $200^{\circ}C$ Complete recrystallization occurred in the specimens annealed at temperatures above $250^{\circ}C$ regardless of the differential ratios. The hardness distribution in the thickness direction of the rolled OFC sheets varied depending on the differential speed ratios. These annealing characteristics were explained by the magnitude of shear strain introduced during rolling.

Strain, Microstructure and Mechanical Properties Through Thickness of Oxygen Free Copper Sheet Processed by Differential Speed Rolling (이주속압연된 무산소동 판재의 두께방향으로의 변형, 조직 및 기계적 특성)

  • Lee, Seong-Hee;Yoon, Dae-Jin;Sakai, Tetsuo;Kim, Su-Hyun;Han, Seung-Zeon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.121-128
    • /
    • 2009
  • The strain, microstructure and mechanical properties through thickness of an oxygen free copper(OFC) processed by differential speed rolling(DSR) were investigated in detail. The OFC sample with thickness of 1 mm was rolled to 35% reduction at ambient temperature without lubrication changing the differential speed ratio from 1.0:1 to 2.2:1. The shear strain introduced by the conventional rolling showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The effects of strain distribution through thickness of the coper sheets on microstructure, texture and mechanical properties are discussed in the present study.

Processing Factors Affecting Microstructure Evolution of Fine-Grained AA6061 via Differential Speed Rolling (6061 알루미늄 합금의 미세조직 발달에 미치는 이속 압연변수 영향)

  • Yoon, D.K.;Yang, H.W.;Sheng, Y.J.;Han, D.I.;Kim, D.J.;Ko, Y.G.
    • Transactions of Materials Processing
    • /
    • v.30 no.4
    • /
    • pp.195-200
    • /
    • 2021
  • In this study, we investigated the dominant processing variables that would influence the microstructural development of AA6061 deformed by differential speed rolling (DSR) at ambient temperature. For this purpose, we carried out a series of DSR on the samples to investigate the effects of roll speed ratio, sample rotation, and number of operation under specific rotation. Among these, the condition with a height reduction of 75% at a speed ratio of 1:4 through rotation along rolling direction (RR) displayed the pronounced results of more homogenous matrix-structure and superior mechanical properties than the others tested in this study. This was mainly due to the cross shearing of macro-shear pattern in segment where dynamic recrystallization took place with ease throughout the sample. Thus, an average microhardness value of 101 Hv was obtained in the present sample deformed by 4-pass DSR with RR where macro cross-shearing was effectively applied.

Effect of Annealing Conditions on Microstructures and Mechanical Properties of a 5083 Al Alloy deformed at Cryogenic Temperature (어닐링 조건이 극저온 압연 5083 Al Alloy의 미세조직 및 기계적성질에 미치는 영향)

  • 이영범;남원종
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.449-454
    • /
    • 2004
  • The annealing behavior of a 5083 Al alloy deformed at cryogenic temperature was investigated, focusing on the evolution of microstructures and mechanical properties. Especially, the effects of annealing temperature, $150~300^{\circ}C$, and time, 3∼60min., on microstructures and mechanical properties of the sheets received 85% reduction at cryogenic temperature were investigated. The optimization of the annealing conditions resulted in a mixture of equiaxed grains and elongated subgrains, exhibiting a good combination of uniform elongation and high strength.

A Study on the Characteristics of the Suspension Components of Rolling Stocks in the Very low Temperature (극한 온도에서의 철도차량용 현가부품의 특성연구)

  • Choi, Byoung-Il;Na, Hee-Seung;Jang, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.45-48
    • /
    • 2004
  • This study is a preview of characteristics of (1st/2nd) rubber suspension parts in low temperature, it will be researched before Trans Korean Railway and continental railway network connection. Rubber material characteristics are different to steel materials. Behavior of rubber material shows large deformation in hyper-elastic region. Moreover, added dashpot and low temperature condition shows various non-linear characteristics.

  • PDF

High Temperature Behavior of Oxidized Mild Steel in Dry and Wet Atmospheres

  • Favergeon, J.;Makni, A.;Moulin, G.;Berger, P.;Lahoche, L.;Viennot, M.
    • Corrosion Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.224-232
    • /
    • 2008
  • During the hot rolling process, steels develop an oxide scale on their surface. This scale can affect the mechanical properties of the rolled steel and its surface aspect. The main problem comes from the mechanical integrity of the oxide scales which could delaminate or crack, leading eventually to later oxide incrustation within the steel. The objective of the present work is to qualify the mechanical integrity of the iron oxide scales during the hot rolling process. The laboratory experiments use a four point bending test to simulate the mechanical solicitation which takes place during the rolling sequence of the steel slabs. The oxide scales grow on a mild steel at $900^{\circ}C$ under wet or dry atmosphere and the oxidized steel is then mecahnically tested at $900^{\circ}C$ or $700^{\circ}C$. The high temperature four point bending tests are completed with microstructural observations and with the record of acoustic emission to follow in-situ the mechanical damages of the oxide scales. The results show the role of water vapor which promotes the scale adherence, and the role of the temperature as the oxide are more damaged at $700^{\circ}C$ than at $900^{\circ}C$.

Finite Element Analysis of Hot Strip Rolling Process (열간박판압연공정의 유한요소해석)

  • 강윤호;황상무
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.5
    • /
    • pp.829-837
    • /
    • 1992
  • This paper presents a new approach for the analysis of hot strip rolling processes. The approach is based on the finite element method and capable of predicting velocity field in the strip, temperature field in the strip, temperature field in the roll, and roll pressure. Basic finite element formulations for heat transfer analysis are described with emphasis on the treatment of numerical instability resulting from a standard Galerkin formulation. Comparison with the theoretical solutions found in the literature is made for the evaluation of the accuracy of the temperature solutions. An iterative scheme is developed for dealing with strong correlations between the metal flow characteristics and the thermal behavior of the roll-strip system. A series of process simulations are carried out to investigate the effect of various process parameters including interface friction, interface heat transfer coefficient, roll speed, reduction in thickness, and spray zone. The results are shown and discussed.

Analysis and Investigation of International(UIC, EN, IEC) and Domestic Standards(Test Methods) for Climatic Wind Tunnel Test of Rolling Stock (철도차량 기후환경시험을 위한 국제 규격(UIC, EN, IEC) 및 국내 규격(시험방법) 분석 및 고찰)

  • Jang, Yong-Jun;Chung, Jong-Duk;Lee, Jae-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.782-789
    • /
    • 2020
  • The demand for the development of rolling stock technology to maintain the best performance in various climatic environments has increased to expand the overseas market of rolling stock. In this study, international and domestic standards that must be applied to build a harsh climatic environment test system were investigated and compared. The way of improvement for domestic standards is proposed. The wind velocities and temperatures are specified in the UIC, EN, and IEC standards for climatic wind tunnel, and EN 50125-1 provides the velocity test up to 180km/h, the largest wind speed. UIC and EN provide the lowest temperature of -45℃, and IEC 62498-1 provides the highest temperature 55℃. The solar radiation test was specified up to 1200W/m2 in the UIC, EN, and IEC. The IEC, EN, and KS R 9145 provide the water tightness standards, which are different from each other in water capacity, pressure, and methods. The snow test method was not well specified. KRTS-VE-Part 31 provides pressurization test methods. The airtightness standards for high-speed rolling stock are defined and regulated for internal pressure change rate in UIC 660 and 779-11. The domestic standard for the wind tunnel test was not well prepared, and the solar radiation test and snow test do not exist in Korea. Therefore, it is necessary to improve domestic standards to an international level for the climatic wind tunnel test of rolling stock.

A numerical analysis of grease thermal elastohydrodynamic lubrication problem using Herschel-Bulkley model (Herschel-Bulkley 모델을 이용한 그리스 열탄성유체윤활 문제의 수치해석)

  • 유진규;김경웅
    • Tribology and Lubricants
    • /
    • v.11 no.3
    • /
    • pp.31-39
    • /
    • 1995
  • Grease thermal elastohydrodynamic lubrication (TEHL) problems of line contacts are analyzed numerically. The effects of temperature and rheological paraineters on grease TEHL are investigated using the Herschel-Bulkley model as a theological model of greases. The pressure distribution, the shape of grease film, mean film temperature and surface temperature of solid wall in line contacts are obtained. It is found that thermal effects on the minimum film thickness become remarkable at high rolling speeds. The effect of yield stress of Herschel-Bulkley model on minimum film thickness is negligible, while the theological index and viscosity parameter have significant effects on minimum film thickness.