Strain, Microstructure and Mechanical Properties Through Thickness of Oxygen Free Copper Sheet Processed by Differential Speed Rolling

이주속압연된 무산소동 판재의 두께방향으로의 변형, 조직 및 기계적 특성

  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Yoon, Dae-Jin (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Sakai, Tetsuo (Department of Materials Science and Engineering, Graduate School of Engineering, Osaka University) ;
  • Kim, Su-Hyun (Department of Materials Technology, Korea Institute of Materials Science) ;
  • Han, Seung-Zeon (Department of Materials Technology, Korea Institute of Materials Science)
  • 이성희 (국립목포대학교 신소재공학과) ;
  • 윤대진 (국립목포대학교 신소재공학과) ;
  • 左海哲夫 (오사카대학교 재료과학과) ;
  • 김수현 (한국기계연구원 부설 재료연구소) ;
  • 한승전 (한국기계연구원 부설 재료연구소)
  • Received : 2008.09.26
  • Published : 2009.02.25

Abstract

The strain, microstructure and mechanical properties through thickness of an oxygen free copper(OFC) processed by differential speed rolling(DSR) were investigated in detail. The OFC sample with thickness of 1 mm was rolled to 35% reduction at ambient temperature without lubrication changing the differential speed ratio from 1.0:1 to 2.2:1. The shear strain introduced by the conventional rolling showed positive values at positions of upper roll side and negative values at positions of lower roll side. However, it showed zero or positive values at all positions for the samples rolled by the DSR. The effects of strain distribution through thickness of the coper sheets on microstructure, texture and mechanical properties are discussed in the present study.

Keywords

Acknowledgement

Supported by : 산업자원부

References

  1. T. Kamijo, S. Shinya and H. Hukutomi, J. Jap. Soc. Tech. Plast. 25(280), 375 (1984)
  2. T. Hirohata, S. Masaki and S. Shima, J. Mater. Proc. Tech., 111, 113 (2001) https://doi.org/10.1016/S0924-0136(01)00492-7
  3. Q. Cui and K. Ohori, Mater. Sci. Tech. 16, 1095 (2000)
  4. Y. S. Song, B. J. Kim, H. W. Kim, S. B. Kang and S. H. Choi, J. Kor. Inst. Met. & Mater. 46, 135 (2008)
  5. K. -H. Kim and D. N. Lee: Acta Mater. 49, 2583 (2001) https://doi.org/10.1016/S1359-6454(01)00036-2
  6. S. H. Lee and D. N. Lee: J. Mech. Sci. 43, 1997 (2001) https://doi.org/10.1016/S0020-7403(01)00025-X
  7. T. Sakai, S. Hamada and Y. Saito: Scripta Mater. 44, 2569 (2001) https://doi.org/10.1016/S1359-6462(01)00932-0
  8. T. Sakai, K. Yoneda and Y. Saito: Materials Science Forum 396-402, 309 (2002)
  9. K. Koyama and T. Komatsubara: KINZOKU Mater. Sci. Tech. 78, 29 (2008)
  10. W. J. Kim, J. D. Park and W. Y. Kim: J. ALLOYS and COMPOUNDS 460, 289 (2008) https://doi.org/10.1016/j.jallcom.2007.06.050
  11. S. H. Lee, T. Sakai and D. H. Shin, Mater. Trans. 44, 1382 (2003) https://doi.org/10.2320/matertrans.44.1382
  12. Y. H. Ji and J. J. Park, Mater. Sci. Eng., A (2008), in press
  13. J. Watanabe, T. Sakai, N. Iwamoto and H. Utsunomiya, J. JRICu 44, 73(2005)