• Title/Summary/Keyword: Rolling Temperature

Search Result 522, Processing Time 0.032 seconds

High Fatigue Life and Tensile Strength Characteristics of Low Activation Ferritic Steel(JLE-1) by TIG Welding (TIG용접한 저방사화 페라이트강(JLF-1)의 고온강도 및 피로수명특성)

  • Yoon, H.K.;Lee, S.P.;Kim, S.W.;Park, W.J.;Kohyama, A.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.181-186
    • /
    • 2001
  • JLF-1 steel (Fe-9Cr-2W-V-Ta), low activation ferritic steel, is one of the promising candidate materials fer fusion reactor applications. High temperature fatigue life and tensile strength of JLF-1 steel and its TIG welded joints were investigated at the room temperature and $400^{\circ}C$. The strength of base metal (JLF-1) is in between those of weld metal and the HAZ. When the test temperature was increased from room temperature to $400^{\circ}C$, both strength and ductility decreased for base metal, weld metal and the HAZ. The longitudinal specimens of base metal showed similar strength and ductility compared with those of the transverse specimens at room temperature and $400^{\circ}C$. Little anisotropy was observed in the JLF-1 steel base metal in terms of rolling direction. Fatigue limit of weld metal which was obtained from cross-weld specimen is 495MPa. Thus, the weld metal showed the higher fatigue limit than those of base metal at both room temperature and $400^{\circ}C$. Little anisotropy of fatigue properties was observed for JLF-1 base metal in terms of rolling direction. When the test temperature was increased from room temperature to $400^{\circ}C$, the fatigue limit of both base metal and weld metal decreased substantially.

  • PDF

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

The Effect of Oxide Layer Thickness to the Scale Defects Generation during Hot finish Rolling (열연사상 압연시 스케일 결함발생에 미치는 산화피막 두께의 영향)

  • 민경준
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.412-422
    • /
    • 1999
  • Scale defects generated on the strip surface in a tandem finishing mill line are collected from the strip trapped among the production mills by freezing the growing scale on the strip by the melt glass coating and shutting down the line simultaneously. The samples observed of its cross sectional figure showed the process of scale defect formation where the defects are formed at the base metal surface by thicker oxidized scale during each rolling passes. The properties of the oxidized layer growth both at rolling and inter-rolling are detected down sized rolling test simulating carefully the rolling condition of the production line. The thickness of the oxidized layer at each rolling pass are simulated numerically. The critical scale thickness to avoid the defect formation is determined through the expression of mutual relation between oxidized layer thickness and the lanks of the strip called quality for the scale defects. The scale growth of scale less than the critical thickness and also to keep the bulk temperature tuning the water flow rate and cooling time appropriately. Two units of Inerstand Cooler are designed and settled among the first three stands in the production line. Two units of scale defect is counted from the recoiled strip and the results showed distinct decrease of the defects comparing to the conventionaly rolled products.

  • PDF

Microstructure and Mechanical Properties of a Copper Alloy Sheet Processed by a Differential Speed Rolling (이속압연에 의해 가공된 동합금 판재의 조직 및 기계적 특성)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.22 no.11
    • /
    • pp.581-586
    • /
    • 2012
  • The microstructure and mechanical properties of a copper alloy sheet processed by differential speed rolling (DSR) were investigated in detail. A copper alloy with thickness of 3 mm was rolled to a 50% reduction at ambient temperature without lubrication and with a differential speed ratio of 2.0:1. For comparison, conventional rolling (CR), in which the rolling speeds of the upper and lower rolls is 2.0 m/min, was also performed under the same rolling conditions. The shear strain of the sample processed by CR showed positive values at the positions of the upper roll side and negative values at the positions of the lower roll side. On the other hand, the sample processed by the DSR showed zero or positive shear strain values at all positions. However, the microstructure and mechanical properties of the as-rolled copper alloys did not show such significant differences between the CR and the DSR. The samples rolled by the CR and the DSR exhibited a typical deformation structure. In addition, the DSR processed samples showed a typical rolling texture in which {112}<111>, {011}<211> and {123}<634> components were developed at all positions. Therefore, it is concluded that the DSR was very effective for the introduction of a uniform microstructure throughout the thickness of the copper alloy.

Microstructure and properties of 316L stainless steel foils for pressure sensor of pressurized water reactor

  • He, Qubo;Pan, Fusheng;Wang, Dongzhe;Liu, Haiding;Guo, Fei;Wang, Zhongwei;Ma, Yanlong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.172-177
    • /
    • 2021
  • The microstructure and texture of three 316L foils of 25 ㎛ thickness, which were subjected to different manufacturing process, were systematically characterized using advance analytical techniques. Then, the electrochemical property of the 316L foils in simulated pressurized water reactor (PWR) solution was analyzed using potentiodynamic polarization. The results showed that final rolling strain and annealing temperature had evident effect on grain size, fraction of recrystallization, grain boundary type and texture distribution. It was suggested that large final rolling strain could transfer Brass texture to Copper texture; low annealing temperature could limit the formation of preferable orientations in the rolling process to reduce anisotropy. Potentiodynamic polarization test showed that all samples exhibited good corrosion performance in the simulated primary PWR solution.

Temperature Control of a Reheating Furnace using Feedback Linearization and Predictive Control

  • Park, Jae-Hun;Jang, Yu-Jin;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.27.1-27
    • /
    • 2001
  • Reheating furnace is a facility of heating up the billet to desired high temperature in the hot charge rolling process and it consists of 3 zones. Temperature control of reheating furnace is essential for successful rolling performance and high productivity. Mostly, temperature control is carried out using PID controller However, the PID control is not effective due to the nonlinearity of the reheating furnace(i.e, presence of the interference of neighboring zones and slow response of temperature etc.). In this paper, feedback linearization method is applied to obtain a linear model of the reheating furnace. Then, controller is designed using simple predictive control method. The effectiveness of this strategy is shown through simulations.

  • PDF

An analytical model for the prediction of strip temperatures in hot strip rolling (열간 압연 중 판의 온도 분포 모델 개발)

  • Kim, J.B.;Lee, J.H.;Hwang, S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.04a
    • /
    • pp.97-102
    • /
    • 2009
  • In hot strip rolling, sound prediction of the temperature of the strip is vital for achieving the desired finishing mill draft temperature (FDT). In this paper, a precision on-line model for the prediction of temperature distributions along the thickness of the strip in the finishing mill is presented. The model consists of an analytic model for the prediction of temperature distributions in the inter-stand zone, and a semi-analytic model for the prediction of temperature distributions in the bite zone in which thermal boundary conditions as well as heat generation due to deformation are predicted by finite element-based, approximate models. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model.

  • PDF

Preparation and Characterization of Polymer Lubricating Bearings (고온용 폴리머 윤활 베어링의 특성 연구)

  • Han, Jong-Dae;Kim, Sang-Keun;Kim, Byung-Kwan
    • Tribology and Lubricants
    • /
    • v.24 no.4
    • /
    • pp.179-185
    • /
    • 2008
  • Microporous polymer lubricants(MPLs) are solid polymer materials containing micropores which are filled with liquid lubricants, and which are molded or formed to suit rolling bearings or other machine parts requiring lubrication. MPLs can be effectively applied to provide long-term, maintenance-free lubrication of a variety of machine elements without fully replacing of oils and greases. The application of rolling bearings packed fully with an MPL could reduce or eliminate the problems such as grease deterioration, leakage, under-lubrication caused by insertion of water or foreign matters under severe operation conditions. This paper discuss the application of MPLs for lubrication of rolling ball bearings. Two different MPLs were synthesized and the features of MPLs were tested. Characteristics of the bearings which are packed fully with synthesized MPLs were investigated using SEM, TG/DSC, extents of oil leakage, OIT, and life time test. After these preliminary tests twelve MPLs were synthesized and evaluated by measuring extents of oil leakage and OIT values. Then synthesis conditions for the optimum MPL were selected by SSRED(Six Sigma Robust Engineering Design) pro gram using extents of oil leakage and OIT values respectively. The optimum MPL by means of OIT value showed higher performance such as long life time and application at higher temperature of $140^{\circ}C$ than previous temperature of $100^{\circ}C$.

Change in Microstructure and Mechanical Properties through Thickness with Annealing of a Cu-3.0Ni-0.7Si Alloy Deformed by Cold Rolling (냉간압연된 Cu-3.0Ni-0.7Si 합금의 어닐링에 따른 두께방향으로의 미세조직 및 기계적 특성 변화)

  • Lee, Seong-Hee;Han, Seung Zeon
    • Korean Journal of Materials Research
    • /
    • v.28 no.2
    • /
    • pp.113-117
    • /
    • 2018
  • Effects of annealing temperature on the microstructure and mechanical properties through thickness of a cold-rolled Cu-3.0Ni-0.7Si alloy were investigated in detail. The copper alloy with thickness of 3 mm was rolled to 50 % reduction at ambient temperature without lubricant and subsequently annealed for 0.5h at $200{\sim}900^{\circ}C$. The microstructure of the copper alloy after annealing was different in thickness direction depending on an amount of the shear and compressive strain introduced by rolling; the recrystallization occurred first in surface regions shear-deformed largely. The hardness distribution of the specimens annealed at $500{\sim}700^{\circ}C$ was not uniform in thickness direction due to partial recrystallization. This ununiformity of hardness corresponded well with an amount of shear strain in thickness direction. The average hardness and ultimate tensile strength showed the maximum values of 250Hv and 450MPa in specimen annealed at $400^{\circ}C$, respectively. It is considered that the complex mode of strain introduced by rolling effected directly on the microstructure and the mechanical properties of the annealed specimens.