• 제목/요약/키워드: Roll stability factor

검색결과 11건 처리시간 0.024초

SENSITIVITY ANALYSIS OF SUV PARAMETERS ON ROLLOVER PROPENSITY

  • Jang, B.C.;Marimuthu, R.P.
    • International Journal of Automotive Technology
    • /
    • 제7권6호
    • /
    • pp.703-714
    • /
    • 2006
  • The growing concern surrounding rollover incidences and consequences of Sports Utility Vehicles(SUV) have prompted to investigate the sensitivity of critical vehicle parameters on rollover. In this paper, dynamic rollover simulation of Sports Utility Vehicles is carried out using a validated nonlinear vehicle model in Matlab/Simulink. A standard model is considered and critical vehicle parameters like CG height, track width and wheel base are varied within chosen specified limits to study its influence on roll behavior during a Fishhook steering maneuver. A roll stability criterion based on Two Wheel Lift Off(TWLO) phenomenon is adopted for rollover propensity prediction. Further dynamic rollover characteristics of the vehicle are correlated with Static Stability Factor(SSF), Roll Stability Factor(RSF) and Two Wheel Lift Off Velocity(TWLV). These findings will be of immense help to SUV chassis designers to determine safety limits of critical vehicle parameters and minimize rollover incidences.

퍼지논리를 이용한 유도탄 롤 제어기 설계 (Design of missile roll controller based on the fuzzy logic)

  • 전병율;남세규;송찬호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1063-1067
    • /
    • 1993
  • Fuzzy logic is applied to a roll autopilot for missiles. Fuzzy rules are made so that the response duplicates that of the conventional control law for some flight condition. A scaling factor of the fuzzy controller is then scheduled by the missile velocity and altitude information to cope with the variation of the roll dynamics from that flight condition. By computer simulations and calculation of the stability margin, it is shown that the fuzzy control is robuster than the conventional one over the flight envelope even though two control laws work similarly for some flight conditions.

  • PDF

다물체 동역학 시뮬레이션을 통한 버스의 전복 시험 규정과 안전성 평가에 관한 고찰 (Review of Regulation for Rollover Test and Evaluation of Safety for Buses by using Simulation of Multi-body Dynamics)

  • 박승운;최요한;이철희
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권3호
    • /
    • pp.39-46
    • /
    • 2022
  • In South Korea, to evaluate the rollover safety of domestic vehicles, the maximum slope angle of the vehicle is specified, which is verified by the rollover safety test of driving vehicles. However, the domestic rollover safety test is not suitable for buses, because the small amount of static stability factor (SSF) will invalidate the rollover experimental equation due to the high center of mass position of buses. To solve the above problems, a dynamic model of the bus is prepared with assumptions of mass and suspension spring properties. Subsequently, the maximum slope angle of the model was computed by using the simulation of multi-body dynamics, and the result was compared with actual test results to validate the dynamics model. Also, the rollover Fishhook (roll stability) test was conducted in the simulation for driving model. During the simulation, roll angle and roll rate were calculated to check if a rollover occurred. Through the rollover simulation of buses, the domestically regulated formula for rollover safety and the procedure of rollover test for driving vehicles are evaluated. The conclusion is that the present regulation of rollover test should be reconsidered for buses to ensure to get the valid results for rollover safety.

이종결합 고속회전 발사 탄의 비행 안정성에 결합력이 미치는 영향성 분석 (Analysis of How the Bonding Force between Two Assemblies Affects the Flight Stability of a High-speed Rotating Projectile)

  • 이상봉;최낙선;이종현;김상민;강병덕
    • 품질경영학회지
    • /
    • 제49권3호
    • /
    • pp.255-268
    • /
    • 2021
  • Purpose: We sought to understand why a high-speed rotating projectile featuring a fuze-and-body assembly sometimes exhibited airburst, and we intended to improve the flight stability by eliminating airburst. Methods: We performed characteristic factor analysis, structural mechanics modeling, and dynamic modeling and simulation; and we scheduled firing tests to discover the cause of airburst. We used a step-by-step procedure to analyze the reliability function for selecting the bonding force standard that prevents airburst. Results: The 00MM high-speed rotating projectile features a fuze bonded to a body assembly; the bonding sometimes can break on firing. The resulting contact force, vibration and roll damping during flight generated yaw. Flight became unstable; fuze operation triggered an airburst. Our reliability test improved the bonding force standard (the force was increased). When the bonding force was at least the minimum required, a firing test revealed that airburst/flight instability disappeared. Conclusion: Analysis and identification of the causes of flight instability and airburst render military training safer and enhance combat power. Ammunition must perform as designed. Our method can be used to set standards that improve the performances of similar types of ammunition.

프레임 장성이 차량의 조종안정서에 미치는 영향 (Effects of Chassis Frame Stiffness on Vehicle Handling Characteristics)

  • 이병림
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.100-105
    • /
    • 2002
  • In order to investigate how the chassis frame stiffness including body structure affects vehicle handling characteristics, in this paper, objective test evaluations such as steady state circle maneuvering test and pulse input transient test are performed. The basic steer characteristics can be obtained from stability factor and 4 parameter method is used to evaluate vehicle handling characteristics between original vehicle and the other with reinforced chassis. The result shows that vehicle with reinforced chassis has advantages in handling characteristics.

Preliminary Test of Adaptive Neuro-Fuzzy Inference System Controller for Spacecraft Attitude Control

  • Kim, Sung-Woo;Park, Sang-Young;Park, Chan-Deok
    • Journal of Astronomy and Space Sciences
    • /
    • 제29권4호
    • /
    • pp.389-395
    • /
    • 2012
  • The problem of spacecraft attitude control is solved using an adaptive neuro-fuzzy inference system (ANFIS). An ANFIS produces a control signal for one of the three axes of a spacecraft's body frame, so in total three ANFISs are constructed for 3-axis attitude control. The fuzzy inference system of the ANFIS is initialized using a subtractive clustering method. The ANFIS is trained by a hybrid learning algorithm using the data obtained from attitude control simulations using state-dependent Riccati equation controller. The training data set for each axis is composed of state errors for 3 axes (roll, pitch, and yaw) and a control signal for one of the 3 axes. The stability region of the ANFIS controller is estimated numerically based on Lyapunov stability theory using a numerical method to calculate Jacobian matrix. To measure the performance of the ANFIS controller, root mean square error and correlation factor are used as performance indicators. The performance is tested on two ANFIS controllers trained in different conditions. The test results show that the performance indicators are proper in the sense that the ANFIS controller with the larger stability region provides better performance according to the performance indicators.

광대역 특성을 가지는 SIW 주파수 선택 표면 설계 (Design of a Wideband Substrate-Integrated Waveguide (SIW) Frequency Selective Surface)

  • 오세명;이한준;이길영
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.107-111
    • /
    • 2014
  • An SIW cavity is a useful tool to design an FSS which shows a rapid roll-off rate and insensitivity to polarizations and incident angles of electromagnetic waves. However, due to its high Q-factor, the FSS also shows narrow bandwidth which is undesirable for high-capacity communication. To address this drawback, we propose a novel technique to enhance the bandwidth while maintaining similar frequency response characteristics and minimizing the increase of the overall thickness of the SIW cavity FSS. In order to verify the performance of the technique, simulated frequency responses will be provided. Also, a parameter which affects the bandwidth will be studied. Finally the stability to polarizations and incident angles will be observed through the simulated results.

준 슬라이딩 모드 제어 기법을 이용한 모델 추종 비행제어 시스템 설계 (Model Following flight Control System Design)

  • 최동균;김신;김종환
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1133-1145
    • /
    • 2000
  • In this paper a model following flight control system design using the discrete time quasi-sliding mode control method is described. The quasi-sliding mode is represented as the sliding mode band, not as the sliding surface. The quasi-sliding mode control is composed of the equivalent control for the nominal system without uncertainties and disturbances and the additive control compensating the uncertainties and disturbances. The linearized plant on the equilibrium point is used in designing a flight control system and the stability conditions are proposed for the model uncertainties. Pseudo-state feedback control which uses the model variables for the unmeasured states is proposed. The proposed method is applied to the design of the roll attitude and pitch load factor control of a bank-to-turn missile. The performance is verified through the nonlinear six degrees of freedom flight simulation.

  • PDF

로드/언로드 성능향상을 위한 서스펜션 상태행렬의 해석 (Analysis of Suspension State Matrix to Improve L/UL Performance)

  • 김기훈;이용현;박경수;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1272-1275
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. Main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short load and unload process. In this paper, we focus on state matrix, pitch static attitude (PSA), roll static attitude (RSA), loading/unloading contour (LC/ULC), impact force and contact. Stability of slider is mainly determined by PSA and RSA. State matrix by PSA and RSA is also important indicator. Therefore we analyze state matrix of SFF HDD suspension through the LC/ULC.

  • PDF

언로드 성능 향상을 위한 딤플 포인트의 최적설계 (Optimal Dimple Point of SFF HDD Suspension for Improving the Unloading Performance)

  • 김기훈;이용현;이형준;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.609-612
    • /
    • 2007
  • The HDD (hard disk drive) using Load/Unload (L/UL) technology includes the benefits which are increased areal density, reduced power consumption and improved shock resistance than those of contact-start-stop (CSS). Dynamic L/UL has been widely used in portable hard disk drive and will become the key technology for developing the small form factor hard disk drive. The main design objectives of the L/UL mechanisms are no slider-disk contact or no media damage even with contact during L/UL, and a smooth and short unloading process. In this paper, we focus on lift-off force, pitch static attitude (PSA), roll static attitude (RSA) and dimple point. The "lift-off" force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. PSA and RSA are also very important parameters in L/UL system and stability of slider is mainly determined by PSA and RSA. Dimple point by PSA and RSA is also important indicator. Therefore we find the optimal dimple point of SFF HDD suspension for improving the unloading performance.

  • PDF