• 제목/요약/키워드: Roll die forming

검색결과 29건 처리시간 0.031초

다단 성형 기술을 이용한 차체 부품 개발 (The Study of Manufacturing Technology for a Sill Side by Roll Forming)

  • 김동규;한상욱;전형준;천세환;문영훈
    • 소성∙가공
    • /
    • 제23권6호
    • /
    • pp.376-379
    • /
    • 2014
  • During roll forming a sheet metal is continuously and progressively formed into a product of the required cross-section and longitudinal shape. An example product is a circular tube with a required diameter, wall-thickness and straightness. Roll forming occurs by passing the sheet through a series of forming rolls that are arranged in tandem. Each pair of forming rolls in the roll forming line plays a particular role in obtaining the required cross-section and longitudinal shape in the product. In recent years, that process is often applied to car body parts by automotive industries. In the current study, an optimal model design and proper roll-pass sequences as well as the number of forming rolls and bending angles were used to produce a sill side. The effects of the process parameters on the final shape formed by roll forming defects were evaluated.

대면적 미세가공시스템 및 장비 개발 (Development of a Large Surface Mechanical Micro Machining System & Machine)

  • 박천홍;오정석;심종엽;황주호
    • 한국정밀공학회지
    • /
    • 제28권7호
    • /
    • pp.761-768
    • /
    • 2011
  • The large surface micro machining system includes the equipments and processes for manufacturing the ultra precision micro patterned products with large surface through the mechanical machining. Recent major issue on the micro machining technology may be the development of optical parts for the back light unit of display which has the largest market. This special issue makes up with three parts; the large surface micro machining system and machine, machining process and forming process. In this paper, the state-of-the-art and core technology of large surface micro machining system is introduced with focus on the manufacturing technology for the back light unit of LCD TV. Then, some research results on the development of a roll die lathe is introduced which involves the concept of machine design, improvement of thermal characteristics in the spindle system, improvement of relative parallelism and straightness between spindle system and long stroke feed table, machining of micro pitch patterns. Finally, the direct forming process is introduced as the future work in the large surface micro machining field.

평판형 전조압연의 성형특성 연구 (A Study on Forming Characteristics in Plate Type Cross Rolling Process)

  • 윤덕재;이근안;이낙규;최석우;이형욱
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.329-332
    • /
    • 2005
  • Cross rolling process is one of incremental forming processes to form an axi-symmetric shaped metal component. It can be classified into two types according to the shape of dies, which are a drum type (roll type) and a plate type (straight type). It can also be classified into a wedge type and a ramp type processes according to deformation characteristics of a material. The ramp type die is applied to plate type cross rolling process in cold forming process for forming of teeth of gear or bolt, while the wedge type die is generally utilized to drum type and plate type cross rolling processes in hot forming process. A shape of the ramp type die is usually same as final shape of a product at every section of a progressing direction, while the shape of the wedge type die has different shapes in a progressing direction. In this paper, a rolling of neck part in a ball stud component has been carried out using the plate type cross rolling process with a ramp shaped die. Forming characteristics have been performed using finite element analysis in order to obtain a proper preform for the ramp type plate cross rolling process.

  • PDF

3차원 곡판 성형을 위한 비정형롤러의 형태에 따른 성형성 평가 (Evaluation of Formability Dependent on Reconfigurable Roller Types for 3D Curved Sheet Forming)

  • 손소은;윤준석;김형호;김정;강범수
    • 소성∙가공
    • /
    • 제25권1호
    • /
    • pp.12-20
    • /
    • 2016
  • Press machines and dies are commonly used for 3D curved sheet forming. Using conventional die forming can cause economic problems since various modifications of the die shape are required depending on the product shape. Various types of flexible forming such as multi-point dieless forming (MDF), flexible incremental roll forming have been developed to improve the needed process flexibility. Although MDF can reduce the production cost using reconfigurable dies, it still has significant material loss. Drawbacks such as wrinkling, dimpling, and forming errors can also occur despite continuous investigations to mitigate these defects. A novel sheet forming process for 3D curved surfaces, a flexibly-reconfigurable roll forming (FRRF), has been recently proposed to overcome the economic and technical limitations of current practice. FRRF has no limitation on blank size in the longitudinal direction, and also minimizes or eliminates forming defects such as wrinkling and dimpling. Feasibility studies of FRRF have been conducted using FE simulations for multi-curved shapes and various sheet thicknesses. Therefore, the fabrication of a FRRF apparatus is required for any follow-up studies. In the current study, experiments with reconfigurable rollers were conducted using a simple design pre-FRRF apparatus prior to fabricating the full size FRRF apparatus. There are three candidates for the reconfigurable roller: a bar-type shaft, a flexible shaft, a ground flexible shaft. Among these candidates, the suitable reconfigurable roller for FRRF is determined through various forming tests.

곡면성형을 위한 비정형롤판재성형 장비 개발 (Development of a Flexibly-reconfigurable Roll Forming Apparatus for Curved Surface Forming)

  • 윤준석;박지우;손소은;김형호;김정;강범수
    • 소성∙가공
    • /
    • 제25권3호
    • /
    • pp.161-168
    • /
    • 2016
  • Sheet metals are often required to be formed into three dimensional curved shapes for use as skin structures. As a result various sheet metal forming methods, such as press die forming, stretch forming, and line heating have been used over the years in industrial production lines. Although they are extensively used in industry, these methods are not suitable for small quantity batch productions. Studies have been conducted to improve or replace these methods with plausible flexible forming technologies. As a part of these studies, we developed a new and more efficient forming device named flexibly-reconfigurable roll forming (FRRF). The current study presents the process development and experimental verification for the applicability of this device. To improve the efficiency of the FRRF apparatus, several hardware components were invented and a suitable operating program was developed using MFC of visual C++. The ways to make the FRRF apparatus fully functional are also described. Sheet metal was formed into three dimensional shapes using the FRRF apparatus and the final products are presented as evidence for the applicability of the developed device.

다중곡률 판재성형을 위한 비정형롤판재성형 공정의 형상설계변수에 대한 연구 (Effect of Shape Design Variables on Flexibly-Reconfigurable Roll Forming of Multi-curved Sheet Metal)

  • 손소은;윤준석;김정;강범수
    • 소성∙가공
    • /
    • 제23권2호
    • /
    • pp.103-109
    • /
    • 2014
  • Flexibly-reconfigurable roll forming (FRRF), which is a sheet forming process for multi-curved sheet metal, may solve both the economic and technical problems incurred in using a conventional die forming process. In the FRRF process, the multi-curved sheet metal is formed by different strain distributions on the sheet metal, and the reconfigurable rollers are used as tools during the forming. Therefore, a thorough investigation focused on the reconfigurable rollers is required for the realization of the FRRF process prior to the fabrication of FRRF machine. In the current study, a series of finite element simulations were conducted to study the load distributions experienced by the reconfigurable roller. In order to verify the shape design variables, the effect of the metal thickness on the curvatures of sheet is also presented.

실험적 연구를 통한 비정형롤판재성형 예측 모델 개발 (Development of Prediction Model for Flexibly-reconfigurable Roll Forming based on Experimental Study)

  • 박지우;길민규;윤준석;강범수;이경훈
    • 소성∙가공
    • /
    • 제26권6호
    • /
    • pp.341-347
    • /
    • 2017
  • Flexibly-reconfigurable roll forming (FRRF) is a novel sheet metal forming technology conducive to produce multi-curvature surfaces by controlling strain distribution along longitudinal direction. Reconfigurable rollers could be arranged to implement a kind of punch die set. By utilizing these reconfigurable rollers, desired curved surface can be formed. In FRRF process, three-dimensional surface is formed from two-dimensional curve. Thus, it is difficult to predict the forming result. In this study, a regression analysis was suggested to construct a predictive model for a longitudinal curvature of FRRF process. To facilitate investigation, input parameters affecting the longitudinal curvature of FRRF were determined as maximum compression value, curvature radius in the transverse direction, and initial blank width. Three-factor three-level full factorial experimental design was utilized and 27 experiments using FRRF apparatus were performed to obtain sample data of the regression model. Regression analysis was carried out using experimental results as sample data. The model used for regression analysis was a quadratic nonlinear regression model. Determination factor and root mean square root error were calculated to confirm the conformity of this model. Through goodness of fit test, this regression predictive model was verified.

자동차용 브레이크 튜브 관단부의 성형해석 (On the Deformation Analysis of the Brake Tube-End for Automobiles)

  • 한규택;박정식
    • 동력기계공학회지
    • /
    • 제6권3호
    • /
    • pp.31-35
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube end is performed by hydraulic press forming machine. In this paper, the forming processes of tube end for automobile is analyzed and designed to make the optimal form of brake tube end. Also, finite element analysis has been carried out using $DEFORM^{TM}% 3D to predict the optimal shape of brake tube end and the results obtained showed the optimal length between punch and chuck is $1.0{\sim}1.2mm$. The shape of tube end is in good agreement with the finite element simulations and the experimental results.

  • PDF

승용차용 브레이크 Tube-End의 최적설계에 관한 연구 (A Study on the Optimal Design of the Brake Tube-End for Automobiles)

  • 한규택;박정식
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.53-57
    • /
    • 2002
  • Brake tube is considered one of the most important parts in automobile. The shape of brake tube-end has a great influence on the function of brake, and the quality and productivity of brake tube have relation to die design. The forming process of brake tube-end is peformed by hydraulic press forming machine. In this paper, the forming processes of tube-end for automobile is analyzed and designed to make the optimal form of brake tube-end. Also, finite element analysis has been carried out using DEFORM-3D$\^$TM/ to predict the optimal shape of brake tube-end and the results obtained showed the optimal length between punch and chuck is 1.0 ∼ 1.2mm. The shape of tube-end is in good agreement with the finite element simulations and the experimental results.

  • PDF