• Title/Summary/Keyword: Role of AI

Search Result 383, Processing Time 0.029 seconds

Comparison of Diets of Urban American Indian and Non-Hispanic Whites: Populations with a Disparity for Biliary Tract Cancer Rates

  • Glew, Robert H.;Wold, Rosemary S.;VanderJagt, Dorothy J.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.7
    • /
    • pp.3077-3082
    • /
    • 2012
  • Aim: The incidence of biliary tract cancer (BTC) is many-fold higher for American Indians (AI) relative to non-Hispanic whites (NHW). Neither gallstones nor genetics can account for this difference. There is speculation that certain fatty acids in bile may play a role in preventing BTC. Since diet may influence composition of bile, we compared the dietary intakes of urban AI and NHW adult women in New Mexico. Methods: Design, a cross-sectional study of the diets of lactating AI and NHW women was conducted. Setting, the University of New Mexico Hospital. Participants, healthy lactating women 18 to 39 years of age were recruited. Main outcome measures, a three-day diet record for each participant was analyzed. Results: The AI women consumed less calcium (p = 0.04) and significantly less short and intermediate chain-length fatty acids (C4-C12), but nearly twice as much proinflammatory arachidonic acid as the NHWs (p <0.01). The intake of dairy products by AI women was less than NHW women (p = 0.01) while the intake of processed meat products was higher (p <0.01). Conclusion: Dietary factors may account for the difference in the risk of BTC between AI and NHW women.

Evaluating the Current State of ChatGPT and Its Disruptive Potential: An Empirical Study of Korean Users

  • Jiwoong Choi;Jinsoo Park;Jihae Suh
    • Asia pacific journal of information systems
    • /
    • v.33 no.4
    • /
    • pp.1058-1092
    • /
    • 2023
  • This study investigates the perception and adoption of ChatGPT (a large language model (LLM)-based chatbot created by OpenAI) among Korean users and assesses its potential as the next disruptive innovation. Drawing on previous literature, the study proposes perceived intelligence and perceived anthropomorphism as key differentiating factors of ChatGPT from earlier AI-based chatbots. Four individual motives (i.e., perceived usefulness, ease of use, enjoyment, and trust) and two societal motives (social influence and AI anxiety) were identified as antecedents of ChatGPT acceptance. A survey was conducted within two Korean online communities related to artificial intelligence, the findings of which confirm that ChatGPT is being used for both utilitarian and hedonic purposes, and that perceived usefulness and enjoyment positively impact the behavioral intention to adopt the chatbot. However, unlike prior expectations, perceived ease-of-use was not shown to exert significant influence on behavioral intention. Moreover, trust was not found to be a significant influencer to behavioral intention, and while social influence played a substantial role in adoption intention and perceived usefulness, AI anxiety did not show a significant effect. The study confirmed that perceived intelligence and perceived anthropomorphism are constructs that influence the individual factors that influence behavioral intention to adopt and highlights the need for future research to deconstruct and explore the factors that make ChatGPT "enjoyable" and "easy to use" and to better understand its potential as a disruptive technology. Service developers and LLM providers are advised to design user-centric applications, focus on user-friendliness, acknowledge that building trust takes time, and recognize the role of social influence in adoption.

STADIUM: Species-Specific tRNA Adaptive Index Compendium

  • Yoon, Jonghwan;Chung, Yeun-Jun;Lee, Minho
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.28.1-28.6
    • /
    • 2018
  • Due to the increasing interest in synonymous codons, several codon bias-related terms were introduced. As one measure of them, the tRNA adaptation index (tAI) was invented about a decade ago. The tAI is a measure of translational efficiency for a gene and is calculated based on the abundance of intracellular tRNA and the binding strength between a codon and a tRNA. The index has been widely used in various fields of molecular evolution, genetics, and pharmacology. Afterwards, an improved version of the index, named specific tRNA adaptation index (stAI), was developed by adapting tRNA copy numbers in species. Although a subsequently developed webserver (stAIcalc) provided tools that calculated stAI values, it was not available to access pre-calculated values. In addition to about 100 species in stAIcalc, we calculated stAI values for whole coding sequences in 148 species. To enable easy access to this index, we constructed a novel web database, named STADIUM (Species-specific tRNA adaptive index compendium). STADIUM provides not only the stAI value of each gene but also statistics based on pathway-based classification. The database is expected to help researchers who have interests in codon optimality and the role of synonymous codons. STADIUM is freely available at http://stadium.pmrc.re.kr.

A Study on Public Library Book Location Guidance System based on AI Vision Sensor

  • Soyoung Kim;Heesun Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.253-261
    • /
    • 2024
  • The role of the library is as a public institution that provides academic information to a variety of people, including students, the general public, and researchers. These days, as the importance of lifelong education is emphasized, libraries are evolving beyond simply storing and lending materials to complex cultural spaces that share knowledge and information through various educational programs and cultural events. One of the problems library user's faces is locating books to borrow. This problem occurs because of errors in the location of borrowed books due to delays in updating library databases related to borrowed books, incorrect labeling, and books temporarily located in different locations. The biggest problem is that it takes a long time for users to search for the books they want to borrow. In this paper, we propose a system that visually displays the location of books in real time using an AI vision sensor and LED. The AI vision sensor-based book location guidance system generates a QR code containing the call number of the borrowed book. When the AI vision sensor recognizes this QR code, the exact location of the book is visually displayed through LED to guide users to find it easily. We believe that the AI vision sensor-based book location guidance system dramatically improves book search and management efficiency, and this technology is expected to have great potential for use not only in libraries and bookstores but also in a variety of other fields.

Transforming Patient Health Management: Insights from Explainable AI and Network Science Integration

  • Mi-Hwa Song
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.307-313
    • /
    • 2024
  • This study explores the integration of Explainable Artificial Intelligence (XAI) and network science in healthcare, focusing on enhancing healthcare data interpretation and improving diagnostic and treatment methods. Key methodologies like Graph Neural Networks, Community Detection, Overlapping Network Models, and Time-Series Network Analysis are examined in depth for their potential in patient health management. The research highlights the transformative role of XAI in making complex AI models transparent and interpretable, essential for accurate, data-driven decision-making in healthcare. Case studies demonstrate the practical application of these methodologies in predicting diseases, understanding drug interactions, and tracking patient health over time. The study concludes with the immense promise of these advancements in healthcare, despite existing challenges, and underscores the need for ongoing research to fully realize the potential of AI in this field.

Critical Factors Affecting the Adoption of Artificial Intelligence: An Empirical Study in Vietnam

  • NGUYEN, Thanh Luan;NGUYEN, Van Phuoc;DANG, Thi Viet Duc
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.225-237
    • /
    • 2022
  • The term "artificial intelligence" is considered a component of sophisticated technological developments, and several intelligent tools have been developed to assist organizations and entrepreneurs in making business decisions. Artificial intelligence (AI) is defined as the concept of transforming inanimate objects into intelligent beings that can reason in the same way that humans do. Computer systems can imitate a variety of human intelligence activities, including learning, reasoning, problem-solving, speech recognition, and planning. This study's objective is to provide responses to the questions: Which factors should be taken into account while deciding whether or not to use AI applications? What role do these elements have in AI application adoption? However, this study proposes a framework to explore the significance and relation of success factors to AI adoption based on the technology-organization-environment model. Ten critical factors related to AI adoption are identified. The framework is empirically tested with data collected by mail surveying organizations in Vietnam. Structural Equation Modeling is applied to analyze the data. The results indicate that Technical compatibility, Relative advantage, Technical complexity, Technical capability, Managerial capability, Organizational readiness, Government involvement, Market uncertainty, and Vendor partnership are significantly related to AI applications adoption.

Examining Development of Collaborative Artificial Intelligence in the Context of Classroom Instruction (수업활동 기반 협력적 인공지능 수학교사 개발에 대한 고찰)

  • Kim, Mi Ryung;Jung, Kyoung Young;Noh, Jihwa
    • East Asian mathematical journal
    • /
    • v.35 no.4
    • /
    • pp.509-528
    • /
    • 2019
  • As various changes in education in general and learning environment in particular have promoted different needs and expectations for learning at both personal and social levels, the roles that schools and school teachers typically have with respect to their students are being challenged. Especially with the recent, rapid progress of the artificial intelligence(AI) field, AI could serve beyond the way in which it has been used. Based on a review of some of the related literature and the current development of AI, a view on utilizing AI to be a collaborative, complementary partner with an human mathematics teacher in the classroom in order to support both students and teachers will be discussed.

Challenges for future directions for artificial intelligence integrated nursing simulation education

  • Sunyoung Jung
    • Women's Health Nursing
    • /
    • v.29 no.3
    • /
    • pp.239-242
    • /
    • 2023
  • Artificial intelligence (AI) has tremendous potential to change the way we train future health professionals. Although AI can provide improved realism, engagement, and personalization in nursing simulations, it is also important to address any issues associated with the technology, teaching methods, and ethical considerations of AI. In nursing simulation education, AI does not replace the valuable role of nurse educators but can enhance the educational effectiveness of simulation by promoting interdisciplinary collaboration, faculty development, and learner self-direction. We should continue to explore, innovate, and adapt our teaching methods to provide nursing students with the best possible education.

The Development of Artificial Intelligence-Enabled Combat Swarm Drones in the Future Intelligent Battlefield (지능화 전장에서 인공지능 기반 공격용 군집드론 운용 방안)

  • Hee Chae;Kyung Suk Lee;Jung-Ho Eom
    • Convergence Security Journal
    • /
    • v.23 no.3
    • /
    • pp.65-71
    • /
    • 2023
  • The importance of combat drones has been highlighted through the recent outbreak of the Russia-Ukraine war. The combat drones play a significant role as a a game changer that alters the conventional wisdom of traditional warfare. Many pundits expect the role of combat swarm drones would be more crucial in the future warfare. In this regard, this paper aims to analyze the development of artificial intelligence-enabled combat swarm drones. To transform the human-operated swarm drones into fully autonomous weaponry system our suggestions are as follows. Developments of (1) AI algorithms for optimized swarm drone operations, (2) decentralized command and control system, (3) inter-drones' mission analysis and allocation technology, (4) enhanced drone communication security and (5) set up of ethical guideline for the autonomous system. Specifically, we suggest the development of AI algorithms for drone collision avoidance and moving target attacks. Also, in order to adjust rapidly changing military environment, decentralized command and control system and mission analysis allocation technology are necessary. Lastly, cutting-edging secure communication technology and concrete ethical guidelines are essential for future AI-enabled combat swarm drones.

'Knowing' with AI in construction - An empirical insight

  • Ramalingham, Shobha;Mossman, Alan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.686-693
    • /
    • 2022
  • Construction is a collaborative endeavor. The complexity in delivering construction projects successfully is impacted by the effective collaboration needs of a multitude of stakeholders throughout the project life-cycle. Technologies such as Building Information Modelling and relational project delivery approaches such as Alliancing and Integrated Project Delivery have developed to address this conundrum. However, with the onset of the pandemic, the digital economy has surged world-wide and advances in technology such as in the areas of machine learning (ML) and Artificial Intelligence (AI) have grown deep roots across specializations and domains to the point of matching its capabilities to the human mind. Several recent studies have both explored the role of AI in the construction process and highlighted its benefits. In contrast, literature in the organization studies field has highlighted the fear that tasks currently done by humans will be done by AI in future. Motivated by these insights and with the understanding that construction is a labour intensive sector where knowledge is both fragmented and predominantly tacit in nature, this paper explores the integration of AI in construction processes across project phases from planning, scheduling, execution and maintenance operations using literary evidence and experiential insights. The findings show that AI can complement human skills rather than provide a substitute for them. This preliminary study is expected to be a stepping stone for further research and implementation in practice.

  • PDF