• Title/Summary/Keyword: Roe의 해법

Search Result 17, Processing Time 0.023 seconds

A Numerical Analysis of the Shallow Water Equations Using the HLLL Approximate Riemann Solver (HLLL 근사 Riemann 해법을 이용한 천수방정식의 수치해석)

  • Hwang, Seung-Yong;Lee, Sam-Hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.148-148
    • /
    • 2011
  • Riemann 문제는 천수방정식과 같은 쌍곡선형 방정식과 단일한 도약에 의해 불연속인 어떤 점의 좌 우에서 상수인 자료로 구성되는 초기치 문제로서 그 해법은 Godunov 방법과 같이 정확해에 의하면 정확 Riemann 해법, 근사 기법에 의하면 근사 Riemann 해법으로 불린다. 지금까지 이용되는 근사 Riemann 해법으로는 1981년에 P. L. Roe가 제안한 Roe의 선형화 기법과 1983년에 A. Harten, P. D. Lax, 그리고 B. van Leer가 제안한 HLL 기법의 수정 기법들이다. 최대 및 최소 파속만 고려하는 것으로 알려진 HLL 기법은 1988년에 B. Einfeldt의 제안에 의해 두 파속의 결정에서 Roe의 선형화 기법에 따른 고유치와 비교하는 것으로 수정되었다(HLLE 기법). 또한, 1994년에 E. F. Toro 등은 접촉파를 고려하기 위해 선형화된 지배방정식의 정확해로부터 중앙 파속을 고려하는 기법을 제안하였고, 이를 HLLC 기법으로 불렀다. 2002년에 T. Linde는 중앙 파속을 평가하기 위해 일반화된(수학적) 엔트로피 함수를 도입하였으며, van Leer는 이를 HLLL 기법으로 불렀다. 이 기법에서는 접촉파의 평가를 위해 보존변수에 대한 일반화된 엔트로피 함수로부터 중앙 파속이 유도되며, 이것과 특성 속도의 비교를 통해 최대 및 최소 파속이 결정된다. 따라서 이 기법에서는 모든 파속이 초기치로부터 결정되므로 HLLE 기법과 달리 Roe의 선형화 기법과 완전히 결별되고 HLLC 기법과 달리 정확해에 의존되지 않는 점에서 HLLL 기법은 모태인 HLL 기법의 온전한 계승으로 볼 수 있다. HLLL 기법은 여러 분야에 적용된 바 있으나, 수공학 분야에 적용된 사례는 알려진 바 없다. 이는 천수방정식에 대한 (물리적) 엔트로피 함수가 명확하지 않기 때문인 것으로 보인다. 이 연구에서는 보존변수로부터 정의되는 총 에너지를 일반화된 엔트로피 함수로 간주하여 모형을 구성하고, 정확해가 알려진 1차원 문제에 대해 적용성을 검토하였다. 정확해가 알려진 경우에 대해 모의한 결과, 1차 정도 수치해의 한계에도 불구하고, HLLL 기법의 결과는 대체로 정확해와 잘 일치하였으며 그 외의 HLL-형 기법의 그것에 비해 우수한 것으로 나타났다. 특히, 물이 빠져 바닥이 드러나는 상태에 대한 접촉 파속의 추정에서 Riemann 불변량을 이용하는 HLLC 기법에 비해 물이 빠지는 전선을 더 정확하게 포착하는 HLLL 기법의 결과는 매우 고무적이었다.

  • PDF

Migration from Compressible Code to Preconditioned Code (압축성 코드에서 예조건화 코드로의 이전)

  • Han, Sang-Hoon;Kim, Myeong-Ho;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.183-195
    • /
    • 2007
  • Comprehensive mathematical comparison of numerical dissipation vector was made for a compressible and the preconditioned version Roe's Riemann solvers. Choi and Merkle type preconditioning method was selected from the investigation of the convergence characteristics of the various preconditioning methods for the flows over a two-dimensional bump. The investigation suggests a way of migration from a compressible code to a preconditioning code with a minor changes in Eigenvalues while maintaining the same code structure. Von Neumann stability condition and viscous Jacobian were considered additionally to improve the stability and accuracy for the viscous flow analysis. The developed code was validated through the applications to the standard validation problems.

Real Gas Speeds of Sound and Approximate Riemann Solver (실제 기체 음속과 근사 리만 해법)

  • Moon, Seong-Young;Han, Sang-Hoon;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • The definition of the speed of sound is reexamined since it is crucial in the numerical analysis of compressible real gas flows. The thermodynamic speed of sound (TSS), $a_{th}$, and the characteristic speed of sound (CSS), $a_{ch}$, are derived using generalized equation of state (EOS). It is found that the real gas EOS, for which pressure is not linearly dependent on density and temperature, results in slightly different TSS and CSS. in this formalism, Roe's approximate Riemann solver was derived again with corrections for real gases. The results show a little difference when the speeds of sound are applied to the Roe's scheme and Advection Upstream Splitting Method (AUSM) scheme, but a numerical instability is observed for a special case using AUSM scheme. It is considered reasonable to use of CSS for the mathematical consistency of the numerical schemes. The approach is applicable to multi-dimensional problems consistently.

Issues and Solutions of Roe Schemes for High Mach Number Flows (고마하수 유동에서 Roe 해법의 문제와 해결)

  • Won S. H.;Choi J. Y.;Jeung I. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.128-134
    • /
    • 2005
  • In the CFD area, the numerical analysis of high Mach number flow over a blunt-body poses many issues. Various numerical schemes have been developed to cover the issues, but the traditional schemes are still used widely due to the complexities of new schemes and intricacy of modifying the established codes. In the present study, the well-known Roe's FDS based on TVD-MUSCL scheme is used for the solution of very high Mach number three-dimensional flows posing carbuncle and non-physical phenomena in numerical analysis. A parametric study was carried out to account for the effects of the entropy fixing, grid configurations and initial condition. The carbuncle phenomena could be easily overcome by the entropy fixing, and the non-physical solution could be eliminated by the use of the modified initial condition regardless of entropy fixing and grid configurations.

  • PDF

Issues and Solutions for the Numerical Analysis of High Mach Number Flow over a Blunt-Body (무딘 물체 주위 고마하수 유동해석의 문제점과 해결책)

  • 원수희;정인석;최정열;신재렬
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.18-28
    • /
    • 2006
  • Numerical analysis of high Mach number flow over a blunt-body poses many difficulties and various numerical schemes have been suggested to overcome the problems. However, the new schemes were used in the limited fields of applications because of the lack of field experience compared to more than 20 years old numerical schemes and the intricacies of modifying the existing code for the special application. In this study, some tips to overcome the numerical difficulties in solving the 3D high-Mach number flows by using Roe's scheme, the most widely used for the past 25 years and adopted in many commercial codes, were examined without a correction of the algorithm or a modification of the CFD code. The well-known carbuncle phenomena of Riemann solvers could be remedied even for an extremely high Mach number by applying the entropy fixing function and a unphysical solution could be overcome by applying a simply modified initial condition regardless of the entropy fixing and grid configuration.

A REAL GAS SOLUTION ALGORITHMS FOR MULTI-PHASE FLOW ANALYSIS (다상 유동 해석을 위한 압축성 실제기체 해법)

  • Han S.H.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.187-194
    • /
    • 2005
  • For the analysis of compressible multi-phase and real gas flows, characteristic form of Roe's Riemann solver was derived using real gas equation of state. It was extended to multi component reactive system considering variable specific heat. From this study, it is known that some correction should be made for the use of existing numerical algorithm. 1) Sonic speed and characteristic variable should be corrected with real gas effect. 2) Roe's average was applicable only with the assumption of constant properties. 3) Artificial damping term and characteristic variables should be corrected but their influences may not be significant.

  • PDF

IMMIGRATION FROM COMPRESSIBLE TO PRECONDITIONING CODE WITH VALIDATIONS (압축성 코드에서 예조건화 코드로의 이전 및 검증)

  • Han S.H.;Kim M.H.;Choi J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.145-150
    • /
    • 2005
  • Generally, Compressible Navier-Stokes codes are used to solve high mach number flows. But, Most of high mach number flows embrace low mach number flows. This phenomenon results in low convergence rate and non-physical solution in CFD analysis. So Many researchers developed preconditioning technique to solve these problems. This Study presents how to modify previous compressible N-S computer code with little changes of structure into preconditioned compressible N-S code applying Roe's Approximate Riemann Solver. And this study show developed preconditioning code is very well operated at all mach number flows.

  • PDF

Comparative Study of Hydraulic Analysis Models Using Riemann Approximate Solver (Riemann 근사해법을 이용한 수리해석모형의 비교 연구)

  • Kim, Ji-Sung;Han, Kun-Yeun;Ahn, Ki-Hong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1332-1336
    • /
    • 2007
  • 댐 제방 붕괴파는 갑작스러운 유량의 증가가 발생하여 불연속적인 흐름특성을 가지는 충격파(shock wave)가 전파되며, 갈수기 저수기에는 중소하천의 상류, 여울과 소에서의 흐름 또는 낙차공이나 보, 댐 여수로 등의 수공구조물에서 부분적인 사류 흐름이 발생된다. 이 때 흐름은 한계수위를 통과하게 되므로 기존 수치해법의 적용에 어려움이 존재한다. 본 연구에서는 실제하천에 적용될 수 있는 1차원 HLL, Roe Riemann 근사해법들을 간단히 소개하고, 시간공간적으로 2차의 고정확도 기법으로 확장하는 방법에 대하여 소개하였다. 각 기법을 정확해가 존재하는 댐붕괴 및 마른하도 전파의 경우에 적용하여 각 기법의 적용성 및 정확성을 비교하였다. 그리고 기존 Lax-Friedrichs 기법과 Lax-Wendroff 기법의 적용결과를 비교하였다. 적용결과 Lax-Friedrichs 기법을 제외한 모든 기법이 정확해와 잘 일치하였으며 특히 HLL 기법을 2차 정확도로 확장한 WAF 기법이 가장 높은 정확도로 계산되었다. 그러나 비선형 생성항이 존재하는 실제하천에 있어서 MUSCL 기법을 이용한 2차 정확도 기법이 합리적일 것으로 판단된다.

  • PDF

Extension of Compressible Flow Solver to Incompressible Flow Analysis (비압축성 유동 해석을 위한 압축성 유동 해석자 확장)

  • Kim, Donguk;Kim, Minsoo;Lee, Seungsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.449-456
    • /
    • 2021
  • In this paper, we present a strategy to extend solution capability of an existing low Mach number preconditioned compressible solver to incompressible flows with a little modification. To this end, the energy equation that is of the same form of the total energy equation of compressible flows is used. The energy equation is obtained by a linear combination of the thermal energy equation, the continuity equation and the mechanical energy equation. Subsequently, a modified artificial compressibility method in conjunction with a time marching technique is applied to these incompressible governing equations for steady flow solutions. It is found that the Roe average of the common governing equations is equally valid for both the compressible and incompressible flow conditions. The extension of an existing compressible solver to incompressible flows does not affect the original compressible flow analysis. Validity for incompressible flow analysis of the extended solver is examined for various inviscid, laminar and turbulent flows.

An Application of the HLLL Approximate Riemann Solver to the Shallow Water Equations (천수방정식에 대한 HLLL 근사 Riemann 해법의 적용)

  • Hwang, Seung-Yong;Lee, Sam Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.21-27
    • /
    • 2012
  • The HLLL scheme, proposed by T. Linde, determines all the wave speeds from the initial states because the middle wave is evaluated by the introduction of a generalized entropy function. The scheme is considered a genuine successor to the original HLL scheme because it is completely separated form the Roe's linearization scheme unlike the HLLE scheme and does not rely on the exact solution unlike the HLLC scheme. In this study, a numerical model was configured by the HLLL scheme with the total energy as a generalized entropy function to solve governing equations, which are the one-dimensional shallow water equations without source terms and with an additional conserved variable relating a concentration. Despite the limitations of the first order solutions, results to three cases with the exact solutions were generally accurate. The HLLL scheme appeared to be superior in comparison with the other HLL-type schemes. In particular, the scheme gave fairly accurate results in capturing the front of wetting and drying. However, it revealed shortcomings of more time-consuming calculations compared to the other schemes.