• Title/Summary/Keyword: Rockwool

Search Result 119, Processing Time 0.027 seconds

Comparison of Climatic Conditions of Sweet Pepper's Greenhouse between Korea and the Netherlands (한국과 네덜란드의 파프리카 재배온실의 시설 내.외부 기상환경 비교)

  • Jeong, Won-Ju;Myoung, Dong-Ju;Lee, Jeong-Hyun
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2009
  • This research aims at comparison of climatic conditions of sweet pepper's greenhouse between Korea (KOR) and the Netherlands (NL) to find out the reason of much lower yield in KOR than NL focus-ing on greenhouse climatic conditions. Hence, greenhouse climate data were obtained from each one commercial glasshouse in both countries. The crops (cv. 'Derby') were grown on rockwool slab with two stems per plant with 3.75plants/$m^2$ in KOR and three stems per plant with 2.5plants/$m^2$ or four stems per plant with 1.875plants/$m^2$ in NL. Even though plant density was differed but stem density was on the same to 7.5stems/$m^2$. There was no significantly difference on weekly growth of sweet pepper plant both countries, whereas harvested nodes to whole nodes of NL's plant was more than two times higher compared to KOR. The averaged daily global radiation during the whole growing periods was 14.5MJ/$m^2$/day in KOR and l2.1MJ/$m^2$/day in NL. Averaged 24h temperature was similar to both glasshouse as $21.6^{\circ}C$ in KOR and $21.2^{\circ}C$ in NL during the whole growing periods, however the variance was higher in KOR than NL. Humidity deficit (HD) was observed higher in KOR during the whole growing periods. Averaged day $CO_2$ concentration was measured contrary pattern in both countries because of heating to greenhouse on NL winter season. Averaged 24h temperature and day $CO_2$ concentration to daily global radiation was regular pattern in NL, whereas there are large scatter in KOR. Consequently, more irregular greenhouse climate condition in KOR could be induced irregularly crop growth.

Growth and Phytochemical Contents of Spinach as Affected by Different Type of Fluorescent Lamp in a Closed-type Plant Production System (밀폐형 식물 생산 시스템에서 형광등 종류에 따른 시금치의 생육 및 기능성물질 함량)

  • Kim, Hyeon Min;Kim, Hye Min;Lee, Hye Ri;Lee, Jae Eun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.386-392
    • /
    • 2017
  • This study was conducted to examine the growth and phytochemical contents of spinach (Spinacia Oleracea L. 'Sushiro') as affected by different fluorescent lamps in a closed-type plant production system. Seeds were sown in a 128-cell plug tray filled in rockwool. The seedlings were transplanted into a DFT (deep floating technique) system with recycling nutrient solution (EC $1.5dS{\cdot}m^{-1}$ and pH 6.5) in a closed-type plant production system. The seedlings were grown under 3 types of fluorescent lamp, #S (NBFHF 32S8EX-D, CH LIGHTING Co. Ltd., China), #O (FHF32SSEX-D, Osram Co. Ltd., Germany), and #P (FLR32SS EX-D, Philips Co. Ltd., The Netherlands) at $150{\mu}mol{\cdot}m-2{\cdot}s^{-1}\;PPFD$ with a photoperiod of 14/10 (light/dark) hours. Plants were cultured under condition of $25{\pm}1^{\circ}C$ temperature and $60{\pm}10%$ relative humidity after transplanting. Thirty plants per each treatment were cultivated for $6^{th}$ week after transplanting. And growth and phytochemical contents were measured at $3^{rd}$ and $6^{th}$ week. At the $3^{rd}$ week after transplanting, the parameter values of plant height and leaf width were higher in the #O than the others. However, fresh and dry weights of root were the greatest in the #P. In addition, total phenolic concentration was the greatest in the #P. At $6^{th}$ week after transplanting, the #O had the greatest growth of spinach in the plant height and fresh and dry weights of shoot. The total phenolic contents significantly increased in the #O and showed significantly difference. However, there was no significant difference all treatments in antioxidant activity. Therefore, these results suggest that the #O was suitable for the growth and phytochemical accumulation of spinach in a closed-type plant production system.

Effects of Climatic Factors varied due to the Type of Plastic House, Cultural Season and Locations in the Plastic House on the Growth of Cucumber Plants Grown in Rockwool (Plastic house의 형태, 재배양식 및 시설내 위치에 따른 기상환경의 차이가 암면재배 오이의 생장에 미치는 영향)

  • Lim Jung-Mook;Kwon Byung-Sun;Shin Dong-Young;Hyun Kyu-Hwan;Kim Hak-Jin;Chung Soon-Ju;Lee Beom-Seon;Lim June-Taeg
    • Korean Journal of Plant Resources
    • /
    • v.19 no.2
    • /
    • pp.218-222
    • /
    • 2006
  • This experiment was conducted to investigate the effects of climatic factors varied due to the type of plastic house, cultural season and location in the house on the growth of cucumber plants grown by nutrient solution. There were two growing periods, summer culture and retarding culture, two types of plastic houses, 1-2W type house and post-less house. Air temperature, relative humidity and amount of solar radiation in the plastic houses were measured. Also, dry weight of leaves and stems, plant height, number of leaves per plant, leaf area per plant and fresh weight of fruits per plant were observed. Plant growth analysis were conducted and interrelationships between climatic factors and physiological characteristics were investigated. The results were as follows. There were no differences between the type of plastic houses in the average air temperature and average relative humidity in the plastic house, but amount of solar radiation in 1-2W type house was significantly higher than that of postless house. Daily cumulative solar radiation were highest in southwest side of 1-2W type house and northwest side of postless house. Plant height and number of leaves per plant were higher in summer culture than retarding culture, while leaf area per plant was higher in retarding culture than summer culture. Relative growth rate (RGR) showed highly significantly positive correlations with net assimilation rate (WAR) and leaf area ratio (LAR). Contribution of NAR to RGR was much higher than that of LAR. Crop growth rate (CGR) showed highly significantly positive correlations with leaf area index (LAI). It appeared that increase of LAI was important to increase productivity of cucumber. Average daily air temperature for the whole growing period showed highly significantly positive correlations with RGR and NAR. Furthermore, cumulative solar radiation for the whole growing period in retarded culture showed significantly positive correlation with RGR and NAR.

Comparison of Nutrient Replenishing Effect under Different Mixing Methods in a Closed-loop Soilless Culture using Solar Radiation-based Irrigation (적산 일사 제어법으로 관수하는 순환식 수경재배에서 배액 혼합 방식에 의한 재사용 양액 내 양분 조정효과 비교)

  • Ahn, Tae-In;Shin, Jong-Hwa;Noh, Eun-Hee;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.247-252
    • /
    • 2011
  • Electrical conductivity, drainage, and irrigation amount of nutrient solution are important factors for determination of the mixing ratio of fresh and reused nutrient solutions in closed-loop soilless culture. Generally a fixed mixing ratio is applied in commercial scale greenhouses using solar radiation-based irrigation system. Although it ensures continuous supply of fresh nutrient solution in the mixing process, occasional discharge of the drainage is inevitably required. This study was conducted to compare the nutrient replenishing effect under different mixing processes and to investigate appropriate mixing process. For this experiment, a fixed mixing ratio (FR), modifiable mixing ratio (MR), and open-loop (OP) as control were applied. Mixing ratio was determined by a set value of EC for dilution of collected drainage in FR and the set values of 1.0 and $2.0dS{\cdot}m^{-1}$ were used as treatments (FR 1.0 and FR 2.0), respectively. In MR, mixing ratio was determined based on EC and volume of drainage within irrigation volume per event. The volume of drainage stored in the drainage tank tended to increase in FR 1.0. Although such trend was not observed in FR 2.0 and MR, the volume of drainage stored in MR was lower than that in FR 2.0. The ion balance of $Mg^{2+}:K^+:Ca^{2+}$ or $SO^{2-}_4:NO^-_3:PO^{3-}_4$ in the drainage and reused nutrient solution changed within a narrow range regardless of treatment.

Effect of Different Nutrient Solution and Light Quality on Growth and Glucosinolate Contents of Watercress in Hydroponics (배양액의 종류 및 광질이 물냉이의 생육 및 Glucosinolate 함량에 미치는 영향)

  • Choi, Jae Yun;Kim, Sung Jin;Bok, Kwon Jeong;Lee, Kwang Ya;Park, Jong Seok
    • Journal of Bio-Environment Control
    • /
    • v.27 no.4
    • /
    • pp.371-380
    • /
    • 2018
  • Aim of this study was to investigate the effects of different nutrient solutions and various light qualities generated by LED on the growth and glucosinolates contents of watercress (Nasturtium officinale) grown under hydroponics for 3 weeks. The seeds of watercress were sown on crushed rockwool media and raised them for two weeks. They were transplanted in a semi-DFT (deep flow technique) hydroponics system. A controlled-environment room was maintained at $20{\pm}1^{\circ}C$ and $16{\pm}1^{\circ}C$ temperatures and $65{\pm}10%$ and $75{\pm}10%$ relative humidity (day and night, respectively), with a provided photosynthetic photon flux density (PPFD) of $180{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and a photoperiod of 16/8h. To find out the best kinds of nutrient solutions for growing watercress, Otsuka House 1A (OTS), Horticultural Experiment Station in Korea (HES), and Netherland's Proefstaion voor Bloemisterij en Gasgroente (PBG) were adapted with initial EC of $1.0-1.3dS{\cdot}m^{-1}$ and pH of 6.2, irradiating PPFD with fluorescent lamps (Ex-1). Either monochromatic (W10 and R10) or mixed LEDs (R5B1, R3B1, R2B1G1, and W2B1G1) were irradiated with a differing ratio of each LED's PPFD to understanding light quality on the growth and glucosinolates contents of watercress (Ex-2). Although significant difference in the shoot growth of watercress was not found among three nutrient solutions treatments, but the root fresh weight increased by 13.7% and 55.1% in PBG and OTS compared to HES, respectively. OTS increased the gluconasturtiin content by 96% and 65% compared to PBG and HES. Compared with the white light (W10), the red light (R10) showed a 101.3% increase in the shoot length of watercress. Increasing blue light portion positively affected plant growth. The content of total glucosinolates in watercress was increased by 144.5% and 70% per unit dry weight in R3B1 treatment compared with R2B1G1 and W10 treatments, respectively. The growth and total glucosinolates contents of the watercress were highest under R3B1 among six light qualities.

Effect of Topophysis and Uniting Method of Rootstock and Scion on Rooting and Subsequent Growth of Stenting-propagated (Cutting-grafted) Roses (접수의 채취부위 및 접수와 대목의 고정법에 따른 장미 접삽묘의 생육 특성)

  • Park, Yoo-Gyeong;Jeong, Byoung-Ryong
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.456-461
    • /
    • 2010
  • A study was conducted to investigate the effect of topophysis, and uniting method of rootstock and scion on rooting and subsequent growth of stenting-propagated cut rose ($Rosa$ $hybrida$ Hort.) in an effort to develop an efficient stenting propagation method for domestic rose cultivars. Four cultivars used in this study were two standard type cultivars 'Sweet Yellow' and 'Hanmaum', and two spray type cultivars 'Chelsi' and 'May'. Scions were grafted on cuttings of a rootstock $Rosa$ $indica$ 'Major'. The stenting-propagated scion-rootstock unions were planted in rockwool cubes ($50{\times}50{\times}50mm$, Delta, Grodan, Denmark) and were placed in a graft-take chamber for five days before being placed on misted greenhouse beds. The rootstock was removed of all leaves and nodes. Both the base of scions and top of stocks were simultaneously cut at a $45^{\circ}$ angle for grafting. Scions were prepared as single node cuttings, each with a five-leaflet leaf. Three positions of topophysis used were 7-9th (top), 4-6th (middle), and 1st-3rd (bottom) nodes from the stem base. Four uniting materials used were tube, tube + parafilm wrap, tube + clothespin, and clothespin. Rooting and growth were affected by the topophysis and cultivar. The best topophysis for rooting was 7-9th (top) nodes in all cultivars. Topophysis affected percent rooting, and number of roots, length of the longest root, and but not weight, shoot length and graft-take. Rooting and growth were affected by the uniting method and cultivar. Tube uniting method generally showed higher percentage graft-take, percent rooting, and number of roots than other methods. However, rootstock and scion union was not complete in this treatment. On the whole, the greatest rooting and subsequent growth of stenting-propagated plants were found in the tube + clothespin method. Except 'Sweet Yellow', rooting and growth were not adequate in the clothespin method. The results suggested that a tube + clothespin method was the most effective, and this method may be used as a substitute to save labor compared to a tube + parafilm wrap method which is currently being used in commercial nurseries.

Applicability of Artificial Light Source and Newly Developed Growing Medium for Lettuce Cultivation in a Closed-type Plant Production System (밀폐형 식물생산시스템에서 상추재배를 위한 인공광원과 신개발 배지의 적용)

  • Lee, Hye Ri;Kim, Hye Min;Kim, Hyeon Min;Park, Sang Hyun;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.28 no.2
    • /
    • pp.134-142
    • /
    • 2019
  • This study was conducted to evaluate the growth characteristics of lettuce (Lactuca sativa L.) as affected by artificial light sources and different growing media in a closed-type plant production system (CPPS). The lettuce seeds were sown in the 128-cell plug tray filled with 5 different growing media such as urethane sponge (US), rock-wool (RW), Q-plug (QP), TP-S2 (TP) and PU-7B (PU). The germination rate of lettuce seeds was examined during 12 days after sowing. On the 13 days after sowing, the lettuce seedlings were transplanted in a CPPS with temperature $25{\pm}1^{\circ}C$ and nutrient solution (EC $2.0dS{\cdot}m^{-1}$, pH 6.5) using recirculating deep floating technique system. The light sources were set with FL (fluorescent lamps) and combined RB LEDs (red : blue = 7 : 3) with $150{\pm}10{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ PPFD and a photoperiod of 14/10 hours (light/dark). The initial germination rate of lettuce was the highest in TP. The final germination and mean daily germination were the significantly highest in RW, QP and TP. The plant height, leaf length, leaf width, leaf area, and fresh and dry weights of shoot were the greatest in QP irradiated with RB LED. The number of leaves, fresh and dry weights of root and SPAD were the greatest in QP and TP irradiated with RB LED. The root length was the longest in TP irradiated with RB LED. Therefore, these results indicate that RB LED was effective for the growth of lettuce and it was also found that the QP and TP were effective for the germination and growth of lettuce in a CPPS. In addition, we confirmed the applicability of the newly developed growing medium TP for the lettuce production in a CPPS.

Determination of Proper Irrigation Scheduling for Automated Irrigation System based on Substrate Capacitance Measurement Device in Tomato Rockwool Hydroponics (토마토 암면재배에서 정전용량 측정장치를 기반으로 한 급액방법 구명)

  • Han, Dongsup;Baek, Jeonghyeon;Park, Juseong;Shin, Wonkyo;Cho, Ilhwan;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.366-375
    • /
    • 2019
  • This experiment aims to determine the proper irrigation scheduling based on a whole-substrate capacitance using a newly developed device (SCMD) by comparing with the integrated solar radiation automated irrigation system (ISR) and sap flow sensor automated irrigation system (SF) for the cultivation of tomato (Solanum lycopersicum L. 'Hoyong' 'Super Doterang') during spring to winter season. For the SCMD system, irrigation was conducted every 10 minutes after the first irrigation was started until the first run-off was occurred, of which the substrate capacitance was considered to be 100%. When the capacitance threshold (CT) was reached to the target point, irrigation was re-conducted. After that, when the target drain volume (TDV) was occurred, the irrigation stopped. The irrigation volume per event for the SCMD was set to 50, 75, or 100 mL at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the CT was set to 0.65, 0.75, 0.80, or 0.90 in the winter cultivation. When the irrigation volume per event was set to 50, 75, or 100 mL, the irrigation frequency in a day was 39, 29, and 19, respectively, and the drain rate was 3.04, 9.25, and 20.18%, respectively. When the CT was set to 0.65, 0.75, or 0.90 in winter, the irrigation frequency was about 6, 7, 15 times, respectively and the drain rate was 9.9, 10.8, 35.3% respectively. The signal of stem sap flow at the beginning of irrigation starting time did not correspond to that of solar irradiance when the irrigation volume per event was set to 50 or 75 mL, compared to that of 100 mL. In winter cultivation, the stem sap flow rate and substrate volumetric water content at the CT 0.65 treatment were very low, while they were very high at CT 0.90 was high. All the integrated data suggest that the proper range of irrigation volume per event is from 75 to 100 mL under at CT 0.9 and TDV 100 mL during the spring to summer cultivation, and the proper CT seems to be higher than 0.75 and lower than 0.90 under at 75 mL of the irrigation volume per event and TDV 70 mL during the winter cultivation. It is going to be necessary to investigate the relationship between capacitance value and substrate volumetric water content by determining the correction coefficient.

Effects of Photoperiod and Light Intensity on the Growth and Glucosinolates Content of Three Brassicaceae Species in a Plant Factory (식물공장에서 광주기 및 광강도가 십자화과 3종의 생육과 글루코시놀레이트 함량에 미치는 영향)

  • Kim, Sunwoo;Bok, Gwonjeong;Shin, Juhyung;Park, Jongseok
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.416-422
    • /
    • 2022
  • This study was conducted to investigate the effect of each light intensity and photoperiod combination on the growth and glucosinolates (GSLs) content of three species of Brassicaceae plants under the same daily light integral (DLI) conditions. Seeds of leaf mustard (Brassica juncea (L.) Czern.), red mustard(Brassica juncea L.) and kale (Brassica oleracea L. var. acephala (DC.) Alef.) were sown in a rockwool cubes and grown for three weeks. DLI was set to 10 mol·m-2·d-1 and treated with 10h-280, 14h-200, 18h-155, 22h-127 µmol·m-2·s-1 for three weeks. As a result at 14h-200 µmol·m-2·s-1 treatment, shoot fresh/dry weight, the number of leaves, and leaf area were increased in leaf mustard and kale but there was no significant difference in other treatments. In the total GSLs content, the treatment of 14h-200 µmol·m-2·s-1 increased significantly 139.95, 135.87, 154.03% compared to 10h-280, 18h-155, 22h-127 µmol·m-2·s-1 treatment in red mustard, and 14h-200 µmol·m-2·s-1 treatment increased significantly 132.96, 132.96, 134.03% compared to other treatments in kale. In red mustard, the treatment of 18h-155 µmol·m-2·s-1 showed an increase in shoot fresh/dry weight and the total GSLs contents than other photoperiods and 14h-200 µmol·m-2·s-1 treatment, the number of leaves significantly 15.62, 12.12, and 32.14% higher than other photoperiods. Since the DLI response is different depending on species even for similar Brassicaceae crops, it is necessary to get more detailed results by conducting optical light quality studies and deriving optimal DLI conditions to achieve minimum power consumption and maximum efficiency.