• 제목/요약/키워드: Rocking failure

검색결과 20건 처리시간 0.023초

주기하중을 받는 비보강 조적벽체의 강체회전거동 (Rocking Behavior of Unreinforced Masonry Walls Under Cyclic Load)

  • 엄태성;김진우;김선웅;김재환;한주연;최호
    • 한국지진공학회논문집
    • /
    • 제27권1호
    • /
    • pp.49-57
    • /
    • 2023
  • This study investigated the rocking behavior of unreinforced masonry walls and wall piers under cyclic loading. Based on the benchmark tests, the characteristics of load-deformation relations in masonry walls with rocking failure were captured, focusing on observed deformation modes. The rocking strengths of masonry walls (i.e., peak and residual strengths) were evaluated, and the effects of opening configurations on the masonry wall strength were examined. The deformation capacity of the rocking behavior and the hysteresis shape of the load-deformation relations were also identified. Based on the results, modeling approaches for the rocking behavior of masonry walls were discussed.

내진보강된 치장조적벽의 파괴특성과 전단강도 (Shear Strength and Failure Mode of Architectural Masonry Walls)

  • 진희종;한상환;박영미
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 춘계 학술발표회 제20권1호
    • /
    • pp.89-92
    • /
    • 2008
  • 본 연구는 조적조로 구성된 치장벽체의 전단거동에 관한 연구이다. 치장조적벽체의 내진보강상 세를 소개하였으며, 본 연구에서 개발한 내진상세를 적용하여 전단거동을 평가하였다. 실험체는 비보 강조적벽(URM) 1개 보강조적벽(RM) 3개로 구성하였으며, 준정적 실험을 수행하였다. 비보강 조적벽은 형상비와 축방향 압축력에 따라 다양한 거동 및 파괴가 일어난다. 그러나 본 연구는 조적구조와는 다른 치장조적조를 대상으로 하였으므로, 전단강도의 주요변수로 작용하는 축방향 압축력은 변수에서 제외 되었다. 실험변수로는 벽체의 보강유무와 형상비로 정하였다. 실험결과 실험체의 거동은 강체회전(Rocking)모드가 지배적으로 나타났으나, 최종파괴는 여러 파괴모드가 복합적으로 나타났다. FEMA273 에서는 면내조적벽의 전단강도식을 제시한다. 강도식은 조적벽의 거동모드에 따라 4가지로 분류되며, 그 거동모드는 강체회전(Rocking), 단부압괴(Toe-Crushing), 수평줄눈미끄러짐(Bed-Joint-Sliding), 사인장(Diagonal-Tension)파괴로 나타내고 있다. FEMA 273에 의해 전단강도를 평가한 결과 치장조적벽의 거동모드는 어느정도 예측 할 수 있었지만, 전단강도는 매우 다르게 나타났다.

  • PDF

Development of self-centring energy-dissipative rocking columns equipped with SMA tension braces

  • Li, Yan-Wen;Yam, Michael C.H.;Zhang, Ping;Ke, Ke;Wang, Yan-Bo
    • Structural Engineering and Mechanics
    • /
    • 제82권5호
    • /
    • pp.611-628
    • /
    • 2022
  • Energy-dissipative rocking (EDR) columns are a class of seismic mitigation device capable of dissipating seismic energy and preventing weak-story failure of moment resisting frames (MRFs). An EDR consists of two hinge-supported steel columns interconnected by steel dampers along its height. Under earthquakes, the input seismic energy can be dissipated by plastic energy of the steel dampers in the EDR column. However, the unrecoverable plastic deformation of steel dampers generally results in residual drifts in the structural system. This paper presents a proof-of-concept study on an innovative device, namely self-centring energy-dissipative rocking (SC-EDR) column, aiming at enabling self-centring capability of the EDR column by installing a set of shape memory alloy (SMA) tension braces. The working mechanism of the SC-EDR column is presented in detail, and the feasibility of the new device is carefully examined via experimental and numerical studies considering the parameters of the SMA bar diameter and the steel damper plate thickness. The seismic responses including load carrying capacities, stress distributions, base rocking behaviour, source of residual deformation, and energy dissipation are discussed in detail. A rational combination of the steel damper and the SMA tension braces can achieve excellent energy dissipation and self-centring performance.

개구부를 갖는 조적벽체의 전단내력에 관한 연구 (Shear capacity of Unreinforced Masonry Wall with Opening)

  • 강대언;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 추계 학술발표회 논문집
    • /
    • pp.69-72
    • /
    • 2006
  • The objective of this study is to find out the shear capacity of URM wall and the variables that affect the shear capacity of URM wall such as the opening and the aspect ratio, considering four kinds of failure modes, sliding shear failure, toe crushing failure, and diagonal shear failure. The main varialble is the shape of opening of URM walls. First URM has one door, second has one window, third hase one door and one window, the last has two windows. The test results of URM with openings show that the specimens are governed by rocking failure mode.

  • PDF

Overturning of precast RC columns in conditions of moderate ground shaking

  • Kafle, Bidur;Lam, Nelson T.K.;Lumantarna, Elisa;Gad, Emad F.;Wilson, John L.
    • Earthquakes and Structures
    • /
    • 제8권1호
    • /
    • pp.1-18
    • /
    • 2015
  • A simple method of assessing the risk of overturning of precast reinforced concrete columns is presented in this paper. The displacement-based methodology introduced herein is distinguished from conventional force-based codified methods of aseismic design of structures. As evidenced by results from field tests precast reinforced concrete columns can be displaced to a generous limit without sustaining damage and then fully recover from most of the displacement afterwards. Realistic predictions of the displacement demand of such (rocking) system in conjunction with the displacement capacity estimates enable fragility curves for overturning to be constructed. The interesting observation from the developed fragility curves is that the probability of failure of the precast soft-storey column decreases with increasing size of the column importantly illustrating the "size effect" phenomenon.

Whole-working history analysis of seismic performance state of rocking wall moment frame structures based on plastic hinge evolution

  • Xing Su;Shi Yan;Tao Wang;Yuefeng Gao
    • Earthquakes and Structures
    • /
    • 제26권3호
    • /
    • pp.175-189
    • /
    • 2024
  • Aiming at studying the plastic hinge (PH) evolution regularities and failure mode of rocking wall moment frame (RWMF) structure in earthquakes, the whole-working history analysis of seismic performance state of RWMF structure based on co-operation performance and PH evolution was carried out. Building upon the theoretical analysis of the elastic internal forces and deformations of RWMF structures, nonlinear finite element analysis (FEA) methods were employed to perform both Pushover analysis and seismic response time history analysis under different seismic coefficients (δ). The relationships among PH occurrence ratios (Rph), inter-story drifts and δ were established. Based on the plotted curve of the seismic performance states, evaluation limits for the Rph and inter-story drifts were provided for different performance states of RWMF structures. The results indicate that the Rph of RWMF structures exhibits a nonlinear evolution trend of "fast at first, then slow" with the increasing of δ. The general pattern is characterized by the initial development of beam hinges in the middle stories, followed by the development towards the top and bottom stories until the beam hinges are fully formed. Subsequently, the development of column hinges shifts from the bottom and top stories towards the middle stories of the structure, ultimately leading to the loss of seismic lateral capacity with a failure mode of partial beam yield, demonstrating a global yielding pattern. Moreover, the limits for the Rph and inter-story drifts effectively evaluate the five different performance states of RWMF structures.

Formulation for seismic response of a ship-block system

  • Kuchaksarai, Masoud Moghaddasi;Bargi, Khosrow
    • Structural Engineering and Mechanics
    • /
    • 제23권3호
    • /
    • pp.293-308
    • /
    • 2006
  • This paper presents a complete and consistent formulation to study the seismic response of a free-standing ship supported by an arrangement of n keel blocks which are all located in a dry dock. It is considered that the foundation of the system is subjected to both horizontal and vertical in plane excitation. The motion of the system is classified in eight different modes which are Rest (relative), Sliding of keel blocks, Rocking of keel blocks, Sliding of the ship, Sliding of both keel blocks and the ship, Sliding and rocking of keel blocks, Rocking of keel blocks with sliding of the ship, and finally Sliding and rocking of keel blocks accompanied with sliding of the ship. For each mode of motion the governing equations are derived, and transition conditions between different modes are also defined. This formulation is based on a number of fundamental assumptions which are 2D idealization for motion of the system, considering keel blocks as the rigid ones and the ship as a massive rigid block too, allowing the similar motion for all keel blocks, and supposing frictional nature for transmitted forces between contacted parts. Also, the rocking of the ship is not likely to take place, and the complete ship separation from keel blocks or separation of keel blocks from the base is considered as one of the failure mode in the system. The formulation presented in this paper can be used in its entirety or in part, and they are suitable for investigation of generalized response using suitable analytical, or conducting a time-history sensitivity analysis.

형상비에 따른 비보강 조적벽체의 전단거동 평가에 관한 연구 (A Study on Evaluation of Shear Behavior of Unreinforced Masonry Wall with Different Aspect Ratio)

  • 이정한;강대언;양원직;우현수;권기혁;이원호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.46-49
    • /
    • 2006
  • In general, the shear behavior mode of URM wall expresses four types of modes such as rocking failure, sliding shear failure, toe crushing failure, and diagonal tension failure. From the comparison of each equation according to the shear behavior modes, the failure modes based on the aspect ratio and vertical axial stress can be expected. The objectives of this study is to find out the shear behavior of URM wall with different aspect ratio. The test results show that the aspect ratio is understood as an important variable.

  • PDF

Lateral loading test for partially confined and unconfined masonry panels

  • Tu, Yi-Hsuan;Lo, Ting-Yi;Chuang, Tsung-Hua
    • Earthquakes and Structures
    • /
    • 제18권3호
    • /
    • pp.379-390
    • /
    • 2020
  • Four full-scaled partially confined and unconfined masonry panels were tested with monotonic lateral loads. To study the effects of vertical force and boundary columns, two specimens with no boundary columns were subjected to different vertical forces, while two wing-wall specimens had the column placed eccentrically and in the middle, respectively. The specimens with no boundary columns exhibited ductile rocking behavior, where the lateral strength increased with increasing vertical compression. The wing-wall specimens with columns behaved as strut-and-tie systems. The column-panel interaction resulted in greater strength, lower deformation capacity and differences in failure modes. A comparison with analytical models showed that rocking strength can be accurately estimated using vertical force and the panel aspect ratio for panels with no boundary columns. The estimation for lateral strength on the basis of a panel section area indicated scattered error for wing-wall specimens.

비보강 시멘트벽돌 건물의 내진성능 실험연구 (Experimental Study on Seismic Resistance of A Unreinforced Cement Brick Building)

  • 김장훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.298-307
    • /
    • 2000
  • The behavior of a unreinforced cement brick building structure subjected to earthquake loading was experimentally investigated. for this four full size wall specimens were tested under quasi-static in-plane cyclic loading. Experimental observations indicate that the failure modes of unreinforced masonry walls are principally governed by sliding or/and rocking depending on the aspect ration and magnitude of axial loading. Also found was the flexure or shear mode resulting from the degraded strength of brick and/or mortar due to the cyclic loading effect.

  • PDF