• Title/Summary/Keyword: Rocket Nozzle

Search Result 336, Processing Time 0.026 seconds

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.

Linear Stability Analysis of a Baffled Rocket Combustor (배플이 장착된 로켓 연소기의 선형 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

Combustion Tests of Sub-scale Combustor for a Liquid Rocket Engine with Internal Mixing Swirl Injector (내부혼합 동축 와류형 분사기를 장착한 액체로켓엔진용 축소형 연소기의 연소시험)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Lim, Byoung-Jik;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.72-77
    • /
    • 2007
  • The combustion test results of the sub-scale combustor having dual swirl injector with internal mixing for a liquid rocket engine are described. The sub-scale combustor uses liquid oxygen(LOx) and kerosene as propellants and has an injector head, an ablative material combustor wall and a water cooled nozzle. The injector head has LOx manifold, fuel manifold, fire face plate, one center swirl injector and 18 main swirl injectors of internal mixing. The combustion tests were successfully performed at design and off-design points without any damages on the injectors. Combustion characteristics velocity of 1756m/s was measured at design point. High frequency combustion instability was not observed but low frequency pulsations occurred at off-design conditions.

Development of 2-ton thrust-level sub-scale calorimeter (추력 2톤급 축소형 칼로리미터 개발)

  • Cho, Won-Kook;Ryu, Chul-Sung;Chung, Yong-Hyun;Lee, Kwang-Jin;Kim, Seung-Han;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.107-113
    • /
    • 2005
  • A calorimeter of 2-ton thrust level rocket engine chamber has been developed to measure the wall heat flux. The liner of the chamber is made of copper-chromium alloy to maximize the heat transfer performance and structural strength. 1-D design code based on empirical correlations has been used for the prediction of the global thermal characteristics while 3-D CFD has been applied for the verification of local cooling performance. The predicted average wall heat flux at the throat is 43 $MW/m^{2}$ for the combustion chamber pressure of 53 bar. The chamber structure is confirmed to be safe at the pressure of 150 bar through 2-D stress analysis and measurement of the strain of the test species. Finally, the test of pressurizing the calorimeter chamber has been performed with water at the pressure of 150 bar in room temperature environment. No thermal damage has been detected after the hot-fire test in the test nozzle of same cooling performance with the developed calorimeter though the measured throat heat flux is higher than the design value by 10%.

A Study on Combustion Characteristic with Chamber Pressure in Hybrid Rocket (하이브리드 로켓에서의 압력에 따른 연소특성에 관한 연구)

  • Cho, Jung-Tae;Kim, Gi-Hun;Lee, Jung-Pyo;Kim, Hak-Chul;Park, Seon-Woo;Park, Joon-Hyng;Han, Hee-Soo;Hwang, Jae-Woong;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.243-246
    • /
    • 2008
  • The combustion characteristic of solid fuel with chamber pressure were experimentally studied in hybrid combustion. This paper was experimental confirmed whether solid fuel affected not only oxidizer mass flux but also chamber pressure. Poly-Ethylene(PE) was used as fuel, GOX was used as oxidizer. Chamber pressure was controled by nozzle throat diameter 6mm and 9mm. In low oxidizer mass flux, solid fuel regression rate was affected not only oxidizer mass flux but also chamber pressure. As well, the regression rate increase as chamber pressure increase with same oxidizer mass flux.

  • PDF

Ignition Characteristics of Combustion Chamber with $LO_X$ Lead Cyclogram for Liquid Rocket Engine (액체로켓엔진 연소기 산화제 선공급 Cyclogram에 의한 점화특성)

  • Han, Yeoung-Min;Kim, Jong-Gyu;Lee, Kwang-Jin;Lim, Byoung-Jik;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hhyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.137-142
    • /
    • 2008
  • Ignition characteristics of combustion chamber with LOx lead cyclogram for liquid rocket engine were described. The combustion chamber has chamber pressure of 60 bar, propellant mass flow rate of 89 kg/s, and nozzle expansion of 12. Cold flow test to determine the filling time of propellant for cyclogram with LOx lead supply, ignition test to check the ability to ignite starting fuel from the ignitor, low pressure combustion test to check the propagation of flame into main fuel-oxidizer mixture from starting fuel and the main combustion stage, and design point combustion test to check the combustion performance were performed. Ignition and combustion tests with LOx lead supply were successfully performed and the stable cyclogram of start sequence for combustion chamber was developed.

  • PDF

Modeling for Thermoacoustic Instability and Beating Pressure Amplification in Hybrid Rocket Combustion (하이브리드 로켓의 열음향 불안정과 연소압력 맥놀이 발생 모델링)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.783-789
    • /
    • 2022
  • In a recent study, it was observed that the combustion gas entering the post chamber of a hybrid rocket contains vortices with very small size and high frequency characteristics. In addition, it was observed that small vortices collided with the nozzle wall to create a counter-flow, resulting in additional combustion with ignition delay. This study investigated the physical relationship between ignition delay induced by the counter-flow and the formation of beating pressure. To do this, a newly modified model was proposed by including ignition delay in the existing energy kicked oscillator model proposed by Culick. Numerical results show that the ignition delay is an important factor in determining the occurrence of the combustion pressure beats through the periodic formation of thermoacoustic coupling. In addition, when the ignition delay was reduced by increasing the post chamber length, the phase difference between the energy kick and the pressure generation was increased, the periodic pressure beats did not occur at all.

Combustion Characteristics of Fuel-rich Gas Generator with Impinging Injector for a Liquid Rocket Engine (액체로켓엔진에서 충돌형 분사기 형태의 연료과잉 가스발생기 연소특성)

  • Han, Yeoung-Min;Kim, Seung-Han;Lee, Kwang-Jin;Moon, Il-Yoon;Seol, Woo-Seok;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.6
    • /
    • pp.64-70
    • /
    • 2005
  • The overall results of hot firing tests of fuel-rich gas generator with impinging injector at design and off-design points are described. The gas generator consists of an injector head with impinging injector, a water cooled combustor wall, a turbulence ring to enhance mixing, an instrument ring measuring temperature and pressure and a nozzle. The combustion tests were successfully performed without damage of gas generator. Test results show that the outlet temperature is not dependent on residence time of hot gas within 4~6msec but dependent on chamber pressure. The relation between outlet temperature and combustion efficiency resulting from measured pressure, mass flow rate and area of nozzle throat is shown. The overall O/F ratio is the critical parameter to determine the outlet temperature and the linear correlation between two parameters is established.

Parametric Study on Heat Flux Characteristics of a Sub-scale Calorimeter (막냉각량 및 작동점 변화가 액체로켓 칼로리미터의 열유속에 미치는 영향)

  • Kim Jong-Gyu;Lee Kwang-Jin;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok;Cho Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.346-350
    • /
    • 2005
  • Effects of the changes of a film cooling mass flow rate and operating conditions on the heat flux characteristics of the subscale calorimeter were studied. A film cooling ring with twelve orifices is inserted between the injector head and the calorimeter. The calorimeter is composed of nineteen cooling channels. When a mass flow rate of film cooling is 10.5 % of a main fuel mass flow rate, maximum heat flux at the nozzle throat is decreased by 30% compared to that without film cooling. In the OD3(of-design point) test result, maximum heat flux at the nozzle throat is increased by 31% compared to that of the DP(design point) test when a film cooling flow rate is zero.

  • PDF