• Title/Summary/Keyword: Rock surface

Search Result 1,109, Processing Time 0.029 seconds

Analysis of permeability in rock fracture with effective stress at deep depth

  • Lee, Hangbok;Oh, Tae-Min;Park, Chan
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.375-384
    • /
    • 2020
  • In this study, the application of conventional cubic law to a deep depth condition was experimentally evaluated. Moreover, a modified equation for estimating the rock permeability at a deep depth was suggested using precise hydraulic tests and an effect analysis according to the vertical stress, pore water pressure and fracture roughness. The experimental apparatus which enabled the generation of high pore water pressure (< 10 MPa) and vertical stress (< 20 MPa) was manufactured, and the surface roughness of a cylindrical rock sample was quantitatively analyzed by means of 3D (three-dimensional) laser scanning. Experimental data of the injected pore water pressure and outflow rate obtained through the hydraulic test were applied to the cubic law equation, which was used to estimate the permeability of rock fracture. The rock permeability was estimated under various pressure (vertical stress and pore water pressure) and geometry (roughness) conditions. Finally, an empirical formula was proposed by considering nonlinear flow behavior; the formula can be applied to evaluations of changes of rock permeability levels in deep underground facility such as nuclear waste disposal repository with high vertical stress and pore water pressure levels.

Probabilistic stability analysis of rock slopes with cracks

  • Zhu, J.Q.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.16 no.6
    • /
    • pp.655-667
    • /
    • 2018
  • To evaluate the stability of a rock slope with one pre-exiting vertical crack, this paper performs corresponding probabilistic stability analysis. The existence of cracks is generally ignored in traditional deterministic stability analysis. However, they are widely found in either cohesive soil or rock slopes. The influence of one pre-exiting vertical crack on a rock slope is considered in this study. The safety factor, which is usually adopted to quantity the stability of slopes, is derived through the deterministic computation based on the strength reduction technique. The generalized Hoek-Brown (HB) failure criterion is adopted to characterize the failure of rock masses. Considering high nonlinearity of the limit state function as using nonlinear HB criterion, the multivariate adaptive regression splines (MARS) is used to accurately approximate the implicit limit state function of a rock slope. Then the MARS is integrated with Monte Carlo simulation to implement reliability analysis, and the influences of distribution types, level of uncertainty, and constants on the probability density functions and failure probability are discussed. It is found that distribution types of random variables have little influence on reliability results. The reliability results are affected by a combination of the uncertainty level and the constants. Finally, a reliability-based design figure is provided to evaluate the safety factor of a slope required for a target failure probability.

The Effect of a Freeze-Thaw Cycle on Rock Weathering: Laboratory Experiments (동결-융해작용에 따른 암석풍화의 특성)

  • YANG, Jae-Hyuk
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.3
    • /
    • pp.21-36
    • /
    • 2011
  • Rock Weathering is a basic of geomorphological evolution as a preparation of materials. Of those, frost shattering has traditionally been considered as the operative process causing rock breakdown in cold regions as well as temperate zone. Each Granite(fresh rock, semi-weathered), Gneiss, Limestone, Dolomite was prepared slab specimens in ten, repeated freeze-thaw cycles of 180 under the -25℃~+30℃, and the changes was observed in physical properties and weathering aspect. Rock shattering was more active in waterlogging conditions rather than atmospheric and soil conditions. Limestone and Dolomite that high porosity are most severely crushed. Gneiss, regardless surface of the crack, joint, fissure and has a lowest rock strength(SHV), was even though no physical changes and their weathering product do not generate, has a very high resistance to weathering.

Stability and Damage Evaluation of the Buddha Triad and 16 Rock-Carved Arhat Statues at Seongbulsa Temple in Cheonan, Korea (천안 성불사 마애석가삼존과 16나한상의 손상도 및 안정성 평가)

  • Yang, Hyeri;Lee, Chan Hee;Jo, Young Hoon
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.4
    • /
    • pp.78-99
    • /
    • 2020
  • The Buddha triad and 16 Arhat statues carved on the rock surface at Seongbulsa temple is the only domestic remaining example of all 16 Arhats, so its academic value is very high. However, it is severely damaged and so required a stability evaluation through study of digital documentation and precise diagnosis for the purpose of comprehensive conservation. This process established that the Buddha statues were of similar scale, while the Arhats showed a wide variety of sizes, and the two kith and kin in the volume were larger than the Arhats. It was estimated that the statues of food for Buddha are similar to the Arhat statues, and most of the statues are well-formed. The rock used to carve the Buddha statues is banded gneiss with distinct foliation, alternating between white bands of quartz and feldspar and black bands composed of biotite. The Buddha statues have been damaged by physical weathering, discoloration, and biological contamination. In damage evaluations, joint (3.6 crack index), peeling (5.2%), exfoliation (1.7%), and falling off (0.1%) were observed on the rock surface of the Buddha statues. In particular, due to severe biological weathering, stage 9 and 10 biological coverage of the rock surface accounted for 57.5% of the total area, and stages 5 to 8 also accounted for a high share at 22.3%. The discoloration factors were shown to be dark brown and white with Fe, Ca, and S, and a large amount of C detected in the blackened contaminants, and the damage weight high in all areas. Discontinuities in different directions were identified in the rock surface. Analysis of potential rock failure types indicated that there is a possibility of plane and toppling failure, but wedge failure is unlikely to occur. The mean ultrasonic velocity of the main rock surface was 2,463m/sec, the lower part of the left side with a large number of joints was relatively low, and the highly weathered (HW) type to the completely weathered (CW) type concentrated distribution, showing weak properties. For the Buddha statues, conservation treatment is required for about 14.9% of micro cracks and 58.9% of exfoliation cracks. In addition, in order to improve the conservation environment of the Buddha statues, maintenance of drainage and ground preparations for the rock surface gradient and plants are necessary, and protection facilities should be reviewed for long-term conservation and management purposes.

Generation of a 3D Artificial Joint Surface and Characterization of Its Roughness (삼차원 인공 절리면의 생성과 이에 대한 거칠기 특성 평가)

  • Choi, Seung-Beum;Lee, Sudeuk;Jeon, Seokwon
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.516-523
    • /
    • 2016
  • Roughness of a joint surface is one of the most important parameters that affects the mechanical and hydraulic behavior of rock mass. Therefore, various studies on making constitutive model and/or roughness quantification have been conducted in experimental and empirical manners. Advances in recent 3D printing technology can be utilized to generate a joint surface with a specific roughness. In this study, a reliable technique to generate a rough joint surface was introduced and its quantitative assessment was made. Random midpoint displacement method was applied to generate a joint surface and the distribution of $Z_2$ was investigated to assess its roughness. As a result, a certain roughness can be embodied by controlling input parameters and furthermore it was able to generate a joint surface with specific roughness anisotropy.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

Economical Analysis and Estimate Method of Possible Working Hours for Marine Rock Excavation Work Regarding the Tide Cycle (조석의 주기를 고려한 해상 암굴착 공사의 경제성 분석 및 작업가능시간 산정 방법에 관한 연구)

  • Kwon, Soon-Boum;Ock, Jong-Ho;Lee, Seung-Hyun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.5
    • /
    • pp.142-151
    • /
    • 2007
  • The rock excavation work on the sea is planned as underwater process if the elevation of the rock is lower than the M.S.L.(Mean Sea Level). However, in case of West and South sea which are largely different between the rise and fall of the tide, the earth work can be performed on the ground while the work surface is exposed above the sea according to the tide cycle. Thus, it may a good substitute to make up for shortcomings of underwater construction works such as safety problems of workers, loss of efficiency and increasement of construction costs. But the difference between the height of the rock excavation surface and the water surface changed by the tide makes the exposure time of work surface, that is the possible working hours be changed. Also, it may cause the changes of construction cost. Thus, this study analyzes the economical efficiency of the construction method using the difference between the rise and fall of the tide in comparison with the construction method which is performed under the sea, and it also suggests the way to analyze the economical working hours by estimating the possible working hours on the ground. We also try to find out the application possibility of the way like the rock excavation work on the sea using the difference between rise and fall of the tide.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.

Behavior of Bond-type Shallow Anchors in Rock Masses ( I ) - Metamorphic Rock (gneiss) at Taean Test Site - (암반에 근입된 부착형 앵커의 거동특성 (I) - 태안지역 편마암 -)

  • Kim, Dae-Hong;Lee, Dae-Soo;Chun, Byung-Sik;Kim, Byung-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.45-55
    • /
    • 2006
  • This paper presents the results of full-scale uplift load tests performed on 30 passive anchors grouted to various lengths at Taean site in Korea. Various rock types were tested, ranging from highly weathered to sound gneiss. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of $1{\sim}4m$. The majority of installations used SD4O-D51 no high grade steel rebar to induce rock failure prior to rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. The test results, the failure mechanisms as well as uplift capacities of rock anchors depend mostly on rock type and quality, embedded fixed length, and the strength of rebar. Based on test results, the main parameters governing the uplift capacity of the rock anchor system were determined.