• Title/Summary/Keyword: Rock stress

Search Result 948, Processing Time 0.026 seconds

A Damage Model for Predicting the Nonlinear Behavior of Rock (암석의 비선형 거동해석을 위한 손상모델 개발)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2002
  • An experimental model which considers post-peak behaviors and pre-peak damage characteristics representing changes of elastic moduli in each damage level was developed. From experiments, some damage thresholds of rocks were determined, and regression analyses were carried out in order to represent changes of elastic moduli in each damage level as functions of confining pressure. In addition, it was intended to simulate post-peak behaviors with Hoek-Brown constants, $m_r\;and\;s_r$ for post-failure. The developed experimental model was implemented into $FLAC^{2D}$ by a FISH function. From results of parametric studies on Hoek-Brown constants for post-peak, it was revealed that uniaxial compressive strength more highly depends upon $s_r$, although it depends on both $m_r\;and\;s_r$. It was also shown that the post-peak slopes of stress-stain curves depend mainly on $m_r$. When the optimum models obtained from parametric studies were applied to numerical analysis, they predicted maximum strengths obtained from experiments and well simulated stiffness changes due to damage levels.

The Association of Family Support and Self-rated Health Status of Low-income Middle-aged Women (일개 시지역의 저소득층 중년여성의 지각된 건강상태와 가족 지지의 관련성)

  • Lee, Kyung-Woo;Park, Ki-Soo;Kang, Yune-Sik;Kim, Rock-Bum;Kim, Bo-Kyoung;Seo, Ae-Rim
    • Korean Journal of Health Education and Promotion
    • /
    • v.26 no.3
    • /
    • pp.15-23
    • /
    • 2009
  • Objectives: The purpose of this study was to investigate self-rated health status and its influencing factors among low-income middle-aged women. Methods: Data on 594 women between the ages of 40 and 59 were collected from November 2007 to January 2008. Structured questionnaires were used to collect data. The following instruments-self efficacy, family support, health promotion behavior- were used in the study after some adaption. Results: The score for the health promotion behavior was 2.94(exercixe), 3.78(nutrition), 3.35(stress), 3.06(Health examination). The score for the self-efficacy was 3.47 and family support was 3.75. In the relationship between demographic and self-rated health status, there were significant differences in job, education level, self efficacy, family support, health promotion behavior. In hierarchy multiple regression analysis, the variables affecting the self-rated health status were job, education, exercise, health examination, family support, self efficacy. Conclusion: Self-efficacy and family support need to be considered in planning health program to improve self-rated health status among middle-aged women.

Geomechanical assessment of reservoir and caprock in CO2 storage: A coupled THM simulation

  • Taghizadeh, Roohollah;Goshtasbi, Kamran;Manshad, Abbas Khaksar;Ahangari, Kaveh
    • Advances in Energy Research
    • /
    • v.6 no.1
    • /
    • pp.75-90
    • /
    • 2019
  • Anthropogenic greenhouse gas emissions are rising rapidly despite efforts to curb release of such gases. One long term potential solution to offset these destructive emissions is the capture and storage of carbon dioxide. Partially depleted hydrocarbon reservoirs are attractive targets for permanent carbon dioxide disposal due to proven storage capacity and seal integrity, existing infrastructure. Optimum well completion design in depleted reservoirs requires understanding of prominent geomechanics issues with regard to rock-fluid interaction effects. Geomechanics plays a crucial role in the selection, design and operation of a storage facility and can improve the engineering performance, maintain safety and minimize environmental impact. In this paper, an integrated geomechanics workflow to evaluate reservoir caprock integrity is presented. This method integrates a reservoir simulation that typically computes variation in the reservoir pressure and temperature with geomechanical simulation which calculates variation in stresses. Coupling between these simulation modules is performed iteratively which in each simulation cycle, time dependent reservoir pressure and temperature obtained from three dimensional compositional reservoir models in ECLIPSE were transferred into finite element reservoir geomechanical models in ABAQUS and new porosity and permeability are obtained using volumetric strains for the next analysis step. Finally, efficiency of this approach is demonstrated through a case study of oil production and subsequent carbon storage in an oil reservoir. The methodology and overall workflow presented in this paper are expected to assist engineers with geomechanical assessments for reservoir optimum production and gas injection design for both natural gas and carbon dioxide storage in depleted reservoirs.

An Evaluation of the Influence of a Mixed Gas Explosion on the Stability of an Underground Excavation (혼합 가스폭발이 지하구조물 안정성에 미치는 영향 평가)

  • Kim, Minju;Kwon, Sangki
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.1-15
    • /
    • 2020
  • With the increase of the utilization of underground space in Korea, explosion accidents at the underground facilities such as gas pipes have occurred frequently. In urban area with high population density, individual explosion accidents are likely to spread into large complex accidents. It is necessary to investigate the effect of explosion on the stability of underground structures in urban area. In this study, a sensitivity analysis was carried out to investigate the possible influence of nearby explosion on the stability of underground structure with 8 parameters including explosion conditions and rock properties. From the sensitivity analysis using AUTODYN, the main and interaction effects of each parameters could be determined. From the analysis, it was found that the distance between explosion point and tunnel, charge weight, and Young's modulus are the most important parameters on the stress components around a tunnel.

Assessment of tunnel stability according to height of embankment by numerical analysis (수치해석을 통한 성토 높이에 따른 터널 안정성 평가 연구)

  • Lee, Kang-Hyun;Lee, Sangrae;Kim, Nag-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.37-45
    • /
    • 2021
  • The construction of the tunnel portal should be careful because cover depth is shallow and it is difficult to exhibit the arching effect. Tunnel stability may be reduced with additional embankment above the portal of tunnel. In this study, in order to examine the stability of the tunnel according to additional embankment above the portal of tunnel, numerical analysis was performed while changing the ground conditions and height of embankment. As a result of the numerical analysis, it was found that the allowable flexural compressive stress of shotcrete and allowable axial force of rockbolts were exceeded when the height of additional embankment was 12 m in rock mass rating V. When considering the displacement, the range of the plastic region and the behavior of the support materials, the tunnel stability seems to be greatly reduced if the height of additional embankment above the portal of tunnel exceeds 10 m.

Stability analysis of coal face based on coal face-support-roof system in steeply inclined coal seam

  • Kong, Dezhong;Xiong, Yu;Cheng, Zhanbo;Wang, Nan;Wu, Guiyi;Liu, Yong
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-243
    • /
    • 2021
  • Rib spalling is a major issue affecting the safety of steeply inclined coal seam. And the failure coal face and support system can be affected with each other to generate a vicious cycle along with inducing large-scale collapse of surrounding rock in steeply inclined coal seam. In order to analyze failure mechanism and propose the corresponding prominent control measures of steeply inclined coal working face, mechanical model based on coal face-support-roof system and mechanical model of coal face failure was established to reveal the disaster mechanism of rib spalling and the sensitive analysis of related factors was performed. Furthermore, taking 3402 working face of Chen-man-zhuang coal mine as engineering background, numerical model by using FLAC3D was built to illustrate the propagation of displacement and stress fields in steeply inclined coal seam and verify the theory analysis as mentioned in this study. The results show that the coal face slide body in steeply inclined working face can be observed as the failure height of upper layer smaller than that of lower layer exhibiting with an irregular quadrilateral pyramid shape. Moreover, the cracks were originated from the upper layer of sliding body and gradually developed to the lower layer causing the final rib spalling. The influence factors on the stability of coal face can be ranked as overlying strata pressure (P) > mechanical parameters of coal body (e.g., cohesion (c), internal fraction angle (φ)) > support strength (F) > the support force of protecting piece (F') > the false angle of working face (Θ). Moreover, the corresponding control measures to maintain the stability of the coal face in the steeply inclined working face were proposed.

A NEW FEEDBACK TECHNIQUE FOR TUNNEL SAFETY BY USING MEASURED DISPLACEMENTS DURING TUNNEL EXCAVATION

  • Sihyun PARK;Yongsuk SHIN;Sungkun PARK
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.432-439
    • /
    • 2009
  • This research project was carried out to develop the technique to assess quantitatively and rapidly the stability of a tunnel by using the measured displacement at the tunnel construction site under excavation. To achieve this purpose, a critical strain concept was introduced and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using the measured displacements during excavation. A numerical practical system was developed based on the proposed analysis technique in this study. The feasibility of the developed analysis module was verified by incorporating the analysis results obtained by commercial programs into the developed analysis module. To verify the feasibility of the developed analysis module, analysis results of models both elastic and elasto-plastic grounds were investigated for the circular tunnel design. Then the measured displacements obtained in the field are utilized practically to assess the safety of tunnels using critical strain concept. It was verified that stress conditions of in-situ ground and ground material properties were accurately assessed by inputting the calculated displacement obtained by commercial program into this module for the elastic ground. However for the elasto-plastic ground, analysis module can reproduce the initial conditions more closely for the soft rock ground than for the weathered soil ground. The stability of tunnels evaluated with two types of strains, that is, the strains obtained by dividing the crown displacement into a tunnel size and the strains obtained by using the analysis module. From this study, it is confirmed that the critical strain concept can be fully adopted within the engineering judgment in practical tunnel problems and the developed module can be used as a reasonable tool for the assessment of the tunnel stability in the field.

  • PDF

Stability evaluation of room-and-pillar underground method by 3D numerical analysis model (3차원 수치해석모델을 이용한 주방식 지하공간의 안정성 평가)

  • Byung-Yun, Kang;Sanghyuk, Bang;Choong-Ky, Roh;Dongkwan, Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • In this study, the stability of the room-and-pillar underground method was investigated using numerical analysis method. In-situ geotechnical investigation was conducted, and a supporting pattern was selected based on the geotechnical investigation data. For the supporting pattern, Type-1, 2, 3 were selected for each ground condition. A 3D numerical analysis model was developed for effective simulation as the room-and-pillar underground method consist of a pillar and room. As a review of numerical analysis, it was confirmed that the crown settlement, convergence, shotcrete and rock bolt were all stable in all supporting patterns. As a result of the analysis by the construction stage, it was confirmed that excessive stress was generated in the room when the construction stage of forming pillar. So, precise construction is required during the actual construction stage of the pillar formation.

Microplane Constitutive Model for Granite and Analysis of Its Behavior (마이크로플레인 모델을 이용한 화강암의 3차원 구성방정식 개발 및 암석거동 모사)

  • Zi Goangseup;Moon Sang-Mo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.41-53
    • /
    • 2006
  • The brittle materials like rocks show complicated strain-softening behavior after the peak which is hard to model using the classical constitutive models based on the relation between strain and stress tensors. A kinematically constrained three-dimensional microplane constitutive model is developed for granite. The model is verified by fitting the experimented data of Westerly granite and Bonnet granite. The triaxial behavior of granite is well reproduced by the model as well as the uniaxial behavior. We studied the development of the fracture zone in granite during blasting impact using the model with the standard finite element method. All the results obtained from the microplane model developed are compared to those from the linear elasticity model which is commonly used in many researches and practices. It is found that the nonlinearity of rocks sigificantly affects the results of analysis.

Characteristics of Shear Behavior for Coarse Grained Materials Based on Large Scale Direct Shear Test (III) - Final Comprehensive Analysis - (대형직접전단시험을 이용한 조립재료의 전단거동 특성 (III) - 최종 종합 분석 -)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Hong, Sung-Yun;Oh, Gi-Dae;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.4
    • /
    • pp.39-54
    • /
    • 2009
  • Large scale direct shear tests were carried out to analyze the shear behavior of crushed rocks at local representative quarries. Shear strength for each specimen was derived and the effects on shear behavior induced by the variation of factors such as particle size, water immersion, density, uniformity coefficient, and particle breakage were evaluated and quantitatively compared with previous studies. The opportunity was also taken to identify stress-dilatancy relation of crushed rocks following the energy-based theory and friction coefficients at critical state as well as peak friction angles and dilation angles were estimated. As a result of tests it was found that uniaxial compressive strength and particle breakage of the parent rocks have crucial effect on internal friction angles; in addition, dilatancy at the failure showed strong relationship as well.