• Title/Summary/Keyword: Rock stress

검색결과 948건 처리시간 0.031초

에폭시/PMR-15 폴리이미드 블렌드계의 경화동력학 및 열안정성에 관한 연구 (Studies on Cure Behavior and Thermal Stability of Epoxy/PMR-15 Polyimide Blend System)

  • Lee, Jae-Rock;Lee, Hwa-Young;Park, Soo-Jin
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.265-268
    • /
    • 2002
  • In this work, the blend system of epoxy and PMR-15 polyimide is investigated in terms of the cure behaviors and thermal stabilities. The cure behaviors are studied in DSC measurements and thermal stabilities are also carried out by TGA analysis. DDM (4, 4'-diamino diphenyl methane) is used as curing agent for EP and the content of PMR-15 is varied within 0, 5, 10, 35, and 20 phr to neat EP. As a result, the cure activation energy ($E_a$) is increased at 10 phr of PMR-15, compared with that of neat EP. From the TGA results of EP/PMR-15 blend system, the thermal stabilities based in the initial decomposed temperature (IDT) and integral procedural decomposition temperature (IPDT) are increased with increasing the PMR-15 content. The fracture toughness, measured in the context of critical stress intensity factor ($K_{IC}$) and critical strain energy release rate ($G_{IC}$), shows a similar behavior with $E_a$. This result is probably due to the crosslinking developed by the interactions between intermolecules in the polymer chains.

  • PDF

Seismic analysis of Roller Compacted Concrete (RCC) dams considering effect of viscous boundary conditions

  • Karabulut, Muhammet;Kartal, Murat E.
    • Computers and Concrete
    • /
    • 제25권3호
    • /
    • pp.255-266
    • /
    • 2020
  • This study presents comparation of fixed and viscos boundary condition effects on three-dimensional earthquake response and performance of a RCC dam considering linear and non-linear response. For this purpose, Cine RCC dam constructed in Aydın, Turkey, is selected in applications. The Drucker-Prager material model is considered for concrete and foundation rock in the nonlinear time-history analyses. Besides, hydrodynamic effect was considered in linear and non-linear dynamic analyses for both conditions. The hydrodynamic pressure of the reservoir water is modeled with the fluid finite elements based on the Lagrangian approach. The contact-target element pairs were used to model the dam-foundation-reservoir interaction system. The interface between dam and foundation is modeled with welded contact for both fixed and viscos boundary conditions. The displacements and principle stress components obtained from the linear and non-linear analyses are compared each other for empty and full reservoir cases. Seismic performance analyses considering demand-capacity ratio criteria were also performed for each case. According to numerical analyses, the total displacements and besides seismic performance of the dam increase by the effect of the viscous boundary conditions. Besides, hydrodynamic pressure obviously decreases the performance of the dam.

Tests of the interface between structures and filling soil of mountain area airport

  • Wu, Xueyun;Yang, Jun
    • Geomechanics and Engineering
    • /
    • 제12권3호
    • /
    • pp.399-415
    • /
    • 2017
  • A series of direct shear tests were conducted to investigate the frictional properties of the interface between structures and the filling soil of Chongqing airport fourth stage expansion project. Two types of structures are investigated, one is low carbon steel and the other is the bedrock sampled from the site. The influence of soil water content, surface roughness and material types of structure were analyzed. The tests show that the interface friction and shear displacement curve has no softening stage and the curve shape is close to the Clough-Duncan hyperbola, while the soil is mainly shear contraction during testing. The interface frictional resistance and normal stress curve meets the Mohr-Coulomb criterion and the derived friction angle and frictional resistance of interface increase as surface roughness increases but is always lower than the internal friction angle and shear strength of soil respectively. When surface roughness is much larger than soil grain size, soil-structure interface is nearly shear surface in soil. In addition to the geometry of structural surface, the material types of structure also affects the performance of soil-structure interface. The wet interface frictional resistance will become lower than the natural one under specific conditions.

A new strain-based criterion for evaluating tunnel stability

  • Daraei, Ako;Zare, Shokrollah
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.205-215
    • /
    • 2018
  • Strain-based criteria are known as a direct method in determining the stability of the geomechanical structures. In spite of the widely use of Sakurai critical strain criterion, it is so conservative to make use of them in rocks with initial plastic deformation on account of the considerable difference between the failure and critical strains. In this study, a new criterion has been developed on the basis of the failure strain to attain more reasonable results in determining the stability status of the tunnels excavated in the rocks mostly characterized by plastic-elastic/plastic behavior. Firstly, the stress-strain curve was obtained having conducted uniaxial compression strength tests on 91 samples of eight rock types. Then, the initial plastic deformation was omitted making use of axis translation technique and the criterion was presented allowing for the modified secant modulus and by use of the failure strain. The results depicted that the use of failure strain criterion in such rocks not only decreases the conservativeness of the critical strain criterion up to 42%, but also it determines the stability status of the tunnel more accurately.

잔교식 안벽구조물의 확률론적 지진위험도해석 (Seismic Risk Analysis of Steel Pile Type Pier)

  • 김동현;조홍연;김두기;조병일
    • 한국해안해양공학회지
    • /
    • 제19권3호
    • /
    • pp.237-243
    • /
    • 2007
  • 잔교식 안벽구조물의 확률론적 지진위험도 해석을 수행하였다. 부지응답해석을 통해 증폭된 지표 지진이 구조물에 가해질 때 강관파일의 조합응력비와 최대수평변위가 한계상태를 초과하는 확률을 지진취약도 곡선으로 표현하였다. 해당 지역의 지진발생확률은 항만설계기준의 지진재해도를 이용하여 최대지반가속도의 초과확률을 구할 수 있었다. 구조물의 최종적인 지진위험도는 지진취약도와 지진재해도를 이용하여 산정하였으며 수치해석 예제를 통해 그 결과를 제시하였다.

암반의 손상역학 해석에 있어서 Fractal차원의 적용에 관한 연구 (A Study on Application of Fractal Dimension in Analysis of Damage Mechanics in Rock)

  • 정교철;정영기
    • 지질공학
    • /
    • 제4권2호
    • /
    • pp.139-151
    • /
    • 1994
  • 암반은 서로 다른 입자 및 미소크랙과 같은 미소구조의 개별요소로 구성되어 있다. 이러한 미소구조에 대한 연구는 대심도 지하공간개발과 관련된 지질공학 및 토목공학분야등에 있어서의 관심이 증대되고 있다. 따라서, 단순한 연속체역학에 의한 접근보다는 구성입자들에 대한 역학적성질 및 개별구조요소등이 고려되어야 할 것이다. 그러나, 단순한 유크리드 공간에서 아들 구조를 표현하기는 매우 어렵다. 그래서 Mandelbrot에 의해 자연에 있어서 규칙성이 거의 없는 물체를 정량적으로 표현하기위한 Fractal이론이 개발되었다. 본 연구에는, 크랙의 진전과 응력의 관계를 평가하기위해 미소구조의 기하학적 성질이 Fractal차원에 의해 계산되었다. 암반의 역학적 성질을 평가함에 있어 그 구조의 복잡성을 Fractal이론에 의해 단순화 및 수치화시켜 균질화이론에 적용시키므로서 그 평가를 보다 용이하고 효과적으로 할 수 있다.

  • PDF

특수기능섬유가 심박변화도와 심리변수에 미치는 효과 (Effect of Multi-Functional Fabric on Heart Rate Variability and Psychological Variables)

  • 이명수;김혜경;김혜정;박기원;문성록
    • 한국의류산업학회지
    • /
    • 제5권3호
    • /
    • pp.295-298
    • /
    • 2003
  • The study investigated the effect of multi-functional fabric on the autonomic nervous function and psychological variables of 20 students. The experimental group exhibited lower values in anxiety, depression, fatigue and stress level and higher emotional level. This study reveals that multi-functional fabrics reduced the low frequency/high frequency power ratio of heart rate variability. These results support the multi-functional fabrics increases cardiac parasympathetic tone. In addition, experimental group were found to have lower heart rate compared with controls. This augmented heart rate in experiment provides support for stablizing autonomic nervous system. In conclusion, multi-functional fabrics may stabilize the autonomic nervous system and psychological symptoms.

RPUM 강관의 효율적인 설계기법에 관한 연구 (A Study on Efficient Design Technique of RPUM Steel Pipes)

  • 김정수;박태순
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1354-1363
    • /
    • 2006
  • Until now, NATM(New Austrian Tunneling Method) has been increasingly developed based on concept of making use of ground as support. Also, NATM in its essence is a method of risk based on monitoring behaviour of tunnel. This Monitoring is irreplaceable for the quality construction of tunnel, and safety of tunnel itself. Pre-reinforcement ahead of a tunnel face using long steel pipes in NATM, known as the RPUM(Reinforced Protective Umbrella Method), is the auxiliary method to sustain the stability of a tunnel face and reduce the ground settlements. Since design of RPUM has been dependent on the empirical design, it is necessary to develop the improved design methods. In this study, to understand behaviour of steel pipes, it is monitored displacement of tunnel crown, axial force of rock bolt, displacement and axial stress of steel pipes. Also, in order to clarify the mechanical behaviour and RPUM effects, 3-Dimensional numerical analysis is performed that various cases of different parameter combinations including original length and repeated length of steel pipes, installation width and angle, repeated length of steel. In the results of comparison monitoring with analysis, it is suggested more economical and efficient design technique than empirical design methods.

  • PDF

지하공동구조물의 설계시 적용되는 지반거동해석 (Analysis of Ground Behavior applied to the Design of Underground Opening Structures)

  • 박남서;이성민
    • 지질공학
    • /
    • 제1권1호
    • /
    • pp.38-53
    • /
    • 1991
  • 지하공동의 설계는 지반이 본래 가지고 있는 물리적 특성을 최대한 이용하는 것을 기본 개념으로 하므로 지반자체의 복잡다양한 역학적 특성들을 평가하여 설계에 반영하는 것은 지극히 어려운 일이며, 이러한 특성들을 일률적으로 평가하는 것도 거의 불가능하다. 컴퓨터의 발달과 수치해석 기술의 적용이 본격화 되기까지는 지반의 거동을 지배하는 몇가지 주요요소의 정성적 혹은 정량적 특성에 의하여 지반을 몇가지 등급으로 분류하여 통계자료의 분석 및 경험적 판단에 의해 설계를 수행하여 왔다. 지하공동구조물 설계시으 지반거동해석은 이완영역의 가정에 의한 방법, 경험적 접근법에 의한 방법 및 최근에 와서 수치해석 기술의 발달에 따라 주로 사용되는 공학적 해석 방법에 의한 지반거동해석 등으로 구분하여 정리하였다.

  • PDF

Rock failure assessment based on crack density and anisotropy index variations during triaxial loading tests

  • Panaghi, Kamran;Golshani, Aliakbar;Takemura, Takato
    • Geomechanics and Engineering
    • /
    • 제9권6호
    • /
    • pp.793-813
    • /
    • 2015
  • Characterization of discontinuous media is an endeavor that poses great challenge to engineers in practice. Since the inherent defects in cracked domains can substantially influence material resistance and govern its behavior, a lot of work is dedicated to efficiently model such effects. In order to overcome difficulties of material instability problems, one needs to comprehensively represent the geometry of cracks along with their impact on the mechanical properties of the intact material. In the present study, stress-strain results from laboratory experiments on Inada granite was used to derive crack tensor as a tool for the evaluation of fractured domain stability. It was found that the formulations proposed earlier could satisfactorily be employed to attain crack tensor via the invariants of which judgment on cracks population and induced anisotropy is possible. The earlier criteria based on crack tensor analyses were reviewed and compared to the results of the current study. It is concluded that the geometrical parameters calculated using mechanical properties could confidently be used to judge the anisotropy as well as strength of the cracked domain.