• Title/Summary/Keyword: Rock relaxation

Search Result 37, Processing Time 0.025 seconds

Methods in Palaeomagnetism (I) (고자기학(古磁氣學)의 방법(方法) (I))

  • Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.17 no.2
    • /
    • pp.141-147
    • /
    • 1984
  • For the discussion of palaeogeomagnetic field direction and the movement and rotation of geotectonic blocks it is prerequisite to eliminate the secondary remanent magnetization component out of the NRM vector of given rock samples. Among various techniques alternating field and thermal demagnetization methods are most easily applicable and most widely used ones. Physical principle underlying these methods is the concept of relaxation time: Either with an action of external magnetic field or with an elevated temperature relaxation time of magnetic minerals can be drastically shortened. It has been furthermore shown experimentally that the secondary remanent magnetization can be more easily demagnetized than the primary remanent magnetization. Through careful stepwise demagnetization it should also be possible to discriminate the kind of various remanent magnetizations. In addition to the introduction to the underlying physical principles and experimental results of the alternating field and thermal demagnetization this paper gives various practical tips in earring out the demagnetization experiments. Each alternating field and thermal demagnetization instrumentation which is easily adaptable to domestic palaeomagnetic laboratories is also introduced. This paper provides a compact and practical introduction to the methods in palaeomagnetism and would be of interest to present workers and to those who want to embark on research in this field.

  • PDF

Effect of Kaempferol on Modulation of Vascular Contractility Mainly through PKC and CPI-17 Inactivation

  • Hyuk-Jun Yoon;Heui Woong Moon;Young Sil Min;Fanxue Jin;Joon Seok Bang;Uy Dong Sohn;Hyun Dong Je
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.361-367
    • /
    • 2024
  • In this study, we investigated the efficacy of kaempferol (a flavonoid found in plants and plant-derived foods such as kale, beans, tea, spinach and broccoli) on vascular contractibility and aimed to clarify the detailed mechanism underlying the relaxation. Isometric contractions of divested muscles were stored and linked with western blot analysis which was carried out to estimate the phosphorylation of myosin phosphatase targeting subunit 1 (MYPT1) and phosphorylation-dependent inhibitory protein for myosin phosphatase (CPI-17) and to estimate the effect of kaempferol on the RhoA/ROCK/CPI-17 pathway. Kaempferol conspicuously impeded phorbol ester-, fluoride- and a thromboxane mimetic-derived contractions regardless of endothelial nitric oxide synthesis, indicating its direct effect on smooth muscles. It also conspicuously impeded the fluoride-derived elevation in phospho-MYPT1 rather than phospho-CPI-17 levels and phorbol 12,13-dibutyrate-derived increase in phospho-CPI-17 and phospho-ERK1/2 levels, suggesting the depression of PKC and MEK activities and subsequent phosphorylation of CPI-17 and ERK1/2. Taken together, these outcomes suggest that kaempferol-derived relaxation incorporates myosin phosphatase retrieval and calcium desensitization, which appear to be modulated by CPI-17 dephosphorylation mainly through PKC inactivation.

Mechanism Analysis of Tunnel Collapse in Weak Ground (미고결 지반에서의 터널붕락 메커니즘 분석)

  • Lee, Jae-Ho;Jeong, Yun-Young;Kim, Young-Su;Moon, Hong-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.4
    • /
    • pp.339-347
    • /
    • 2009
  • Despite the recent improvement in tunnel excavation technique, Tunnel collapse accidents still happen. This paper suggest two typical cases in unconsolidated ground condition. Collapse causes of each case were analyzed by the measurement records and numerical simulation, and then mechanism of tunnel collapse was investigated about each case. From this study, the crucial indicators of tunnel collapse were the variation of shear strain and ground water level, also, tunnel collapse deeply related to how shear deformation around tunnel was developed according to the excavation step.

A Study on Setup for Preliminary Decision Criterion of Continuum Rock Mass Slope with Fair to Good Rating (양호한 연속체 암반사면의 예비 판정기준 설정 연구)

  • Kim, Hyung-Min;Lee, Su-gon;Lee, Byok-Kyu;Woo, Jae-Gyung
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • It can be observed that steep slopes ($65^{\circ}$ to $80^{\circ}$) consist of rock masses were kept stable for a long time. In rock-mass slopes with similar ground condition, steeper slopes than 1 : 0.5 ($63^{\circ}$) may be applied if the discontinuities of rock-mass slope are distributed in a direction favorable to the stability of the slope. In making a decision the angle of the slope, if the preliminary rock mass conditions applicable to steep slope are quantitatively setup, they may be used as guidance in design practice. In this study, the above rock mass was defined as a good continuum rock mass and the quantitative setup criterion range was proposed using RMR, SMR and GSI classifications for the purpose of providing engineering standard for good continuum rock mass conditions. The methods of study are as follows. The stable slope at steep slopes ($65^{\circ}$ to $80^{\circ}$) for each rock type was selected as the study area, and RMR, SMR and GSI were classified to reflect the face mapping results. The results were reviewed by applying the calculated shear strength to the stable analysis of the current state of rock mass slope using the Hoek-Brown failure criterion. It is intended to verify the validity of the preliminary criterion as a rock mass condition that remains stable on a steep slope. Based on the analysis and review by the above research method, it was analyzed that a good continuum rock mass slope can be set to Basic RMR ${\geq}50$ (45 in sedimentary rock), GSI and SMR ${\geq}45$. The safety factor of the LEM is between Fs = 14.08 and 67.50 (average 32.9), and the displacement of the FEM is 0.13 to 0.64 mm (average 0.27 mm). This can be seen as a result of quantitative representation and verification of the stability of a good continuum rock mass slope that has been maintained stable for a long period of time with steep slopes ($65^{\circ}$ to $80^{\circ}$). The setup guideline for a good continuum rock mass slope will be able to establish a more detailed setup standard when the data are accumulated, and it is also a further study project. If stable even on steep slopes of 1 : 0.1 to 0.3, the upper limit of steep slopes is 1 : 0.3 with reference to the overseas design standards and report, thus giving the benefit of ensuring economic and eco-friendlyness. Also, the development of excavation technology and plantation technology and various eco-friendly slope design techniques will help overcome psychological anxiety and rapid weathering and relaxation due to steep slope construction.

A study on the development and field application of SP-Rockbolt with high-strength steel pipe (고강도 강관을 적용한 SP-록볼트 개발 및 현장 적용을 위한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ahn, DongWook
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.4
    • /
    • pp.651-668
    • /
    • 2017
  • For initial stability of the tunnel, the primary support, Shotcrete and rockbolt shall be placed in the most appropriate time. This is because the role of such support plays a vital role in long-term and short-term tunnel stability. In this study, the rock bolt is an important supporting system that receives the external pressure generated by the stress relaxation during tunnel excavation as axial force and transmits it to the shotcrete on the tunnel excavation surface. Until now, most of the materials of rock bolts have been used in the field, but there have been many problems such as uncertain quality of Chinese materials entering the market, poor packing due to falling down of rock bolts when filled with mortar, and corrosion due to water. Therefore, in this study, we have developed a high strength steel pipe rock bolt using Autobeam material to solve and improve various problems of existing rock bolts. In order to evaluate the performance of the developed bolt, field tests were carried out and the existing mortar filler in order to improve the performance of the rock bolt, the design and construction criteria were studied and the results were included in this paper.

Experimental Studies on the Effects of Soumin Kamikop'ungsan (소음인(少陰人) 가미거풍산(加味祛風散)의 효능(效能)에 관(關)한 실험적(實驗的) 연구(硏究))

  • Hwang, Seong-Rock
    • Journal of Sasang Constitutional Medicine
    • /
    • v.2 no.1
    • /
    • pp.177-188
    • /
    • 1990
  • In order to investigate experimentally the clinical effects of Soumin Kamikop'ungsan (少陰人 加味祛風散) that was prescribed to cure the Wisuhanrihanbyung (胃受寒裡寒病) of Sumin (少陰人) the author experimented various activities of mixed extract from the Sournin Kamikop'ungsan by the method prescribed in the experimental part. The results of the studies were summerized as follows: 1. Analgesic effects by acetic acid and Randall-Sellito experimental method were noted. 2. Anticonvulsive effect to strychnine was noted. 3. The sedation effects by the unbalanced effects of spontaneous momentum by wheel cage method, muscle relaxing action by Rotor rod method were noted. 4. A prolongation of anesthetic time by Thiopental-Na on the mice was noed. 5. The expansion of blood vessels by relaxation of smooth muscle was noted. According to the above results, results of Soumin Kamikop'ungsan on oriental medical references were consistent with the actual experimental results.

  • PDF

A Study on the Numerical Analysis of A NATM Tunnel with Consideration of Construction Procedure and Field Measurement (시공과정 및 현장계측을 고려한 NATM 터널의 수치해석적 연구)

  • Park, Choon-Sik;Kang, Man-Ho
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.28-38
    • /
    • 2010
  • In order to investigate the tendency of general displacements and behaviors with respect to each construction process as well as the applicability of numerical analysis schemes, this research has focused on not only analyzing a variety of field observations made in a NATM tunnel, such as displacement of top and side, stress of shotcrete and axial strength of rock bolt, but also carrying out a series of numerical analyses. It was established from the investigation that the 2-dimensional continuum numerical analysis was the one which could more accurately predict displacement of crown and side in the area of one step excavation (patten, P1-P3), while the 2-dimensional discontinuum analysis was the most suitable scheme to study that of two step excavation (patten, P4-P6). In addition, the 2-dimensional continuum analysis enabled to appropriately predict the axial strength of rock bolt and stress of shotcrete in all the area of the tunnel. Finally, it has been possible to conclude from the study that the 3-dimensional continuum analysis should be applied to inspect the behavior and tendency with respect to each stage of the construction as well as in the case of joints, such as large turnouts where relaxation loads in both of horizontal and vertical direction are piled up.

A Review on nuclear magnetic resonance logging: fundamental theory and measurements (자기공명검층: 기본 이론 및 자료 측정)

  • Jang, Jae Hwa;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.4
    • /
    • pp.235-244
    • /
    • 2012
  • Nuclear magnetic resonance (NMR) logging has been considered one of the most complicated nevertheless, one of the most powerful logging methods for the characterization on of both rocks and natural fluids in formation. NMR measures magnetized signals (polarization and relaxation) between the properties of hydrogen nucleus called magnetic moment and applied magnetic fields. The measured data set contains two important petrophysical properties such as density of hydrogen in the fluids inside the pore space and the distinct decay rate for fluid type. Therefore, after the proper data processing, key petrophysical information, not only the quantities and properties of fluids but also supplies of rock characterization in a porous medium, could be archived. Thus, based on this information, several ongoing researches are being developed in estimating aspects of reservoir productivity information, permeability and wettability since it is the key to having correct interpretation. This study goes through the basic theory of NMR at first, and then reviews NMR logging tools as well as their technical characteristics. This paper also briefly discusses the basic knowledge of NMR simulation algorithm by using Random walk.

Behavior Characteristics of Precast Concrete-Panel Retaining Wall Adhered to In-situ Ground through Large Scaled Load Test (대형재하시험을 통한 원지반 부착식 패널옹벽의 거동특성)

  • Shin, Yuncheol;Min, Kyongnam;Kim, Jinhee;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.45-53
    • /
    • 2016
  • A precast panel wall system resists against the horizontal earth pressure by increasing the shear strength of ground by reinforcement connected to the panel. The application of precast panel wall system is growing to lately minimize the earth work and environmental damage caused by large cut slope and to use the limited land effectively. The ground adhered panel wall system is the construction method that has the panel engraved with natural rock shape to improve the landscape. This system is developed to complete Top-Down method, and it is possible to have vertical cut, and to adhere to in-situ ground, improve construction ability by minimizing the ground relaxation and exclusion the trench and backfill process. In this study the field tests were performed to verify the construction ability about the vertical cut and complete Top-Down process and the construction behavior of ground adhered panel wall system was analyzed by large scale loading test and measurement results during loading test.

Stability Assessment of Building Foundation over Abandoned Mines (채굴 지역에서의 건축물 기초 지반 안정성 평가 연구)

  • 권광수;박연준
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.174-181
    • /
    • 2001
  • The cavities created by underground mining, if remained unfilled, can cause ground settlement and surface subsidence as a result of relaxation and breakdown of the carven roof. Construction of structures above the underground mine cavity will have serious problems concerning both structural stability and safely even if the cavity is back-filled. This study was conducted to confirm the location and condition of the cavern as well as the state of the back-fill in A mine area using core logging and borehole camera. The bearing capacity and other mechanical properties of the ground were also measured by the standard penetration test(SPT). Obtained data were used to assess the stability of the ground and the structures to be built by numerical analysis using FLAC. The site investigation results showed that the mine cavities were filled with materials such as boulder and silty sand(SM by unified classification). Result of the numerical analyses indicated that constructing building structures on the over-lying ground above the filled cavities is secure against the potential problems such as surface subsidence and ground settlement.

  • PDF