• 제목/요약/키워드: Rock mass property

검색결과 43건 처리시간 0.022초

지반정수산정을 위한 경험적 암반평가기법과 상관성 (Empirical Equations for Rock Mass Classifications and Rock Property Evaluations)

  • 신중호;신희순
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.79-86
    • /
    • 2002
  • Rock mass classifications form the back bone of the empirical design approach and are widely employed in rock engineering. In this paper the inter-relations were discussed among RMR, Q-system, RCR, N, M-RMR, RMi, and L-RMR. Several relationships for the assessment of the modulus of deformation of rock mass, Poisson's ratio, uniaxial compressive strength, tensile strength, cohesion and internal friction angle were also analysed and suggested.

  • PDF

동결융해작용을 받는 암반사면의 안정성해석에 관한 연구 (Study on Stability Analysis of Rock Slope Under Freezing-Thawing Cycle)

  • 백용
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.543-550
    • /
    • 2000
  • Rock slopes along the road or railroad are affected by temperature and therefore experienced iterative freezing-thawing process between winter and early spring. The purpose of this study is to analyze the stability of rock slopes which are influenced by the deterioration due to the freezing-thawing. The analysis is the homogenization method which evaluates the strength property of discontinuous rock mass, and as a strength failure criterion, Drucker-Prager failure criterion is used. The deterioration property of real rock is obtained by a freezing-thawing laboratory test of tuff and this property of deterioration is quantitated and used as a basic data of stability analysis for rock mass. To evaluate the deterioration depth due to the freezing-thawing in situ rock slope, one dimensional heat conductivity equation is used and as the result I can find that the depth of which is affected by a temperature. After the freezing-thawing depth of model slope is determined, we analyze the pattern of rock mass stength value of rock slope model which excesses the limit of self-load.

  • PDF

Strength degradation of a natural thin-bedded rock mass subjected to water immersion and its impact on tunnel stability

  • Zhang, Yuting;Ding, Xiuli;Huang, Shuling;Wu, Yongjin;He, Jun
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.63-71
    • /
    • 2020
  • Strength anisotropy is a typical feature of thin-bedded rock masses and their strength will be degraded subjected to water immersion effect. Such effect is crucial for the operation of hydropower plant because the impoundment lifts the water level of upstream reservoir and causes the rock mass of nearby slopes saturated. So far, researches regarding mechanical property of natural thin-bedded rock masses and their strength variation under water immersion based on field test method are rarely reported. This paper focuses on a thin-bedded stratified rock mass and carries out field test to investigate the mechanical property and strength variation characteristics. The field test is highlighted by samples which have a large shear dimension of 0.5 m*0.5 m, representing a more realistic in-situ situation than small size specimen. The test results confirm the anisotropic nature of the concerned rock mass, whose shear strength of host rocks is significantly larger than that of bedding planes. Further, the comparison of shear strength parameters of the thin-bedded rock mass under natural and saturated conditions show that for both host rocks and bedding planes, the decreasing extent of cohesion values are larger than friction values. The quantitative results are then adopted to analyze the influence of reservoir impoundment of a hydropower plant on the surrounding rock mass stability of diversion tunnels which are located in the nearby slope bank. It is evaluated that after reservoir impoundment, the strength degradation induced incremental deformations of surrounding rock mass of diversion tunnels are small and the stresses in lining structure are acceptable. It is therefore concluded that the influences of impoundment are small and the stability of diversion tunnels can be still achieved. The finings regarding field test method and its results, as well as the numerical evaluation conclusions are hoped to provide references for rock projects with similar concerns.

동결융해 심도를 고려한 암반사면의 안정성 해석에 관한 연구 (Stability Analysis of Rock Slope with Consideration of Freezing-Thawing Depth)

  • 백용
    • 지질공학
    • /
    • 제11권1호
    • /
    • pp.13-23
    • /
    • 2001
  • 도로나 철도 변에 나타나는 암반사면은 외부 기온에 영향을 받아 동절기부터 이른봄에 걸쳐 동결융해작용을 반복해서 받는다. 본 연구의 목적은 불연속성 암반이 동결융해작용을 반복하여 받을 경우 열화현상을 겪게 되고 이에 따른 암반의 안정성이 어떻게 변화되는가를 해석한다. 해석방법으로는 균질화법을 이용하여 불연속성 암반의 강도특성을 밝히고 파괴기준으로는 드러커-플래커 기준을 이용한다. 또한 실제 암석의 열화특성은 응회암을 채취하여 실내 동결융해실험에 의하여 열화특성을 정량화 하여 암반의 안정성 해석의 기초 자료로 이용한다. 현장사면에서 동결융해에 의한 열화의 깊이를 추정하기 위하여 일차원 열전도 방정식을 이용하여 온도에 영향을 받는 깊이를 구한다. 모델 사면의 동결융해 깊이를 결정한 후 모델 암반사면에서 암반의 강도 값의 변화양상을 해석한다. 암반의 작용하는 외력은 자중에 의한 중력만이 작용한다고 가정하고 안전율 해석을 실시한다. 그 결과 암반의 안정성 변화양상을 정량적으로 분석한다. 대상으로 하는 두 도시의 경우 동결융해 영향을 받는 깊이는 1.0m 내외 였으며 10년 경과 후에는 암반의 붕괴 조짐을 나타나는 것을 추측할 수 있다.

  • PDF

현장암반 평가에 관한 제안 및 암반분류법들간의 상관관계 고찰 (A Suggestion of In-situ Rock Mass Evaluation and Correlation between Rock Mass Classfication Methods)

  • 김홍표;장호민;강추원;고진석
    • 화약ㆍ발파
    • /
    • 제28권2호
    • /
    • pp.133-147
    • /
    • 2010
  • 본 연구에서는 암반분류를 현장에서 바로 실시할 수 있는 암반분류법을 도출하고 도출된 분류법과 기존분류법간의 상관관계를 고찰하는데 그 목적이 있다. 암반 묘사를 위한 분류인자를 먼저 암반강도와 암반구조로 나누었으며, 암반강도는 점하중강도와 절리상태, 암반구조는 RQD와 절리간격을 통하여 평가하였다. 변수의 평가를 위한 지표는 기존의 분류법에서 획득하여 이용하였으며, 이를 통하여 암반의 강도 특성과 구조적 특성을 모두 나타내었다. 도출된 각 각의 변수에는 25점의 배점을 할당하였다. $RMR_{basic}$과 본 연구와의 상관관계는 $RMR_{basic}$ = 0.86(X-Method)+14.47, 수정 RMR과 본 연구와의 상관관계는 $RMR^*$ = 0.87(X-Method)+9.20로 나타났다. 결정계수는 각각 $R^2$=0.841, $R^2$=0.846으로 나타났다.

동일 기반암 지역에서 산지와 곡지 암석의 풍화 특성 비교 (Comparison ofrock weathering propertiesfrom mountain and valley areas of homogeneous bedrock areas)

  • 이광률
    • 한국지형학회지
    • /
    • 제23권1호
    • /
    • pp.1-16
    • /
    • 2016
  • This study estimates relationships between physical and chemical weathering indices of various rock types and topographical relief. Physical weathering properties such as rock strength and joint and chemical weathering indices such as the $SiO_2/Al2O_3$, CIA and WPI were analyzed from 18 rock outcrops in mountain and valley areas consisting of 9 rock types. The results indicate that the elevation and relief of topography increase physical strength of rock increases. It can be suggested that the total r(rock-mass strength rating) and R(rock rebound strength by Schmidt Hammer) are most useful indices as a quantitative weathering property factor to explain formative causes of topographical relief. The results also suggest that rock types such as sandstone, granite, gneiss and schist are most suitable to explain meaningful difference in topographical relief with the physical and chemical weathering indices.

지공학적 암반분류의 재평가 (REVALUATION OF )

  • 김교원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1993년도 봄 학술회 논문집
    • /
    • pp.33-40
    • /
    • 1993
  • The Bieniawski's geomechanics classification system(1984) is widely employed as a tool of engineering evaluation of rock masses for tunnel design. Since the siz parameters adoped in the system are believed to control the engineering behavior of rock mass under an external load, no question may be raised to the conceptional idea immanent in the system. However, the rating grade for each individual parameter given in the system may be properly measured since an engineering property of rock mass is not stepwise changed but continuously changed. In order to get the proper rating grade based upon the continuously changed properties in each parameter, several equations presented in this paper are obtained through regration analyses with the grades and median values of properties givne in the system. A FORTRAN computer program given in the paper could provide not only RMR value but also rock mass properties (E, c, o, v, etc.) using the empirical equations.

  • PDF

국내에 분포하는 암반의 물리·역학적 특성 분석 (Analysis on Physical and Mechanical Properties of Rock Mass in Korea)

  • 서용석;윤현석;김동규;권오일
    • 지질공학
    • /
    • 제26권4호
    • /
    • pp.593-600
    • /
    • 2016
  • 본 연구에서는 국내의 107개 터널 설계 과정에서 수행한 현장 및 실내시험 자료 4,280개를 이용하여 암반 및 무결암의 역학적 특성을 암종 및 강도별로 분석하였다. 분석된 물리 및 역학적 특성은 단위중량, 점착력, 내부마찰각, 변형계수, 탄성계수, 포아송비, 일축압축강도, 인장강도, 투수계수, 비중이다. 평균값의 분석 결과에 의하면 편마암은 비중, 화강암은 투수계수, 퇴적암은 단위중량과 점착력, 내부마찰각, 화산암은 변형계수와 탄성계수, 일축압축강도, 인장강도, 변성암은 포아송비에서 가장 높은 값을 보인다. 역학적 특성의 분포 범위는 암종 및 강도를 고려한 분석에도 불구하고 넓게 분포하며, 이는 암반의 불균질성과 이방성에 기인하는 것으로 판단된다.

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

입자결합모델을 이용한 불연속체 암반의 역학적 물성 평가 (Evaluation of the mechanical properties of discontinuous rock masses by using a bonded-particle model)

  • 박의섭;류창하;배성호
    • 한국터널공학회:학술대회논문집
    • /
    • 한국터널공학회 2005년도 학술발표회 논문집
    • /
    • pp.348-358
    • /
    • 2005
  • Although the evaluation of the mechanical properties and behavior of discontinuous rock masses is very important for the design of underground openings, it has always been considered the most difficult problem. One of the difficulties in describing the rock mass behavior is assigning the appropriate constitutive model. This limitation may be overcome with the progress in discrete element software such as PFC, which does not need the user to prescribe a constitutive model for rock mass. Instead, the micro-scale properties of the intact rock and joints are defined and the macro-scale response results from those properties and the geometry of the problem. In this paper, a $30m{\times}30m{\times}30m$ jointed rock mass of road tunnel site was analyzed. A discrete fracture network was developed from the joint geometry obtained from core logging and surface survey. Using the discontinuities geometry from the DFN model, PFC simulations were carried out, starting with the intact rock and systematically adding the joints and the stress-strain response was recorded for each case. With the stress-strain response curves, the mechanical properties of discontinuous rock masses were determined and compared to the results of empirical methods such as RMR, Q and GSI. The values of Young's modulus, Poisson's ratio and peak strength are almost similar from PFC model and Empirical methods. As expected, the presence of joints had a pronounced effect on mechanical properties of the rock mass. More importantly, the mechanical response of the PFC model was not determined by a user specified constitutive model.

  • PDF