• Title/Summary/Keyword: Rock engineering

Search Result 4,374, Processing Time 0.034 seconds

Hydrochemistry and Distribution of Uranium and Radon in Groundwater of the Nonsan Area (논산지역 지하수중 우라늄과 라돈의 수리지질학적 특성과 정밀함량분포)

  • Cho, Byeong Wook;Kim, Moon Su;Kim, Tae Seung;Han, Jin Seok;Yun, Uk;Lee, Byeong Dae;Hwang, Jae Hong;Choo, Chang Oh
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.427-437
    • /
    • 2012
  • A total of 100 groundwater samples were collected from the Nonsan area and the behaviors of uranium and radon as natural radionuclides were investigated with respect to other physicochemical components in the groundwater in order to understand their occurrence, properties, and origins. Radionuclide levels were used to construct detailed concentration maps. The concentration of uranium ranges from 0 to 378 ${\mu}g/L$, with an average of 8.57 ${\mu}g/L$, standard deviation of 42.88 ${\mu}g/L$, and median of 0.56 ${\mu}g/L$. The correlation coefficient between uranium and radon is 0.42, whereas these radionuclides show no relation with other physicochemical components in groundwater. It is noteworthy that the uranium level in most samples (97% of the samples) is less than 30 ${\mu}g/L$, where the bedrock of the aquifer is granite or complex rocks located along the boundary between granite and metamorphic rocks. In the Okcheon metamorphic belt, the uranium concentration of most groundwater is less than 1 ${\mu}g/L$. Radon levels varies from 128 to 9,140 pCi/L, with an average of 2,186 pCi/L, standard deviation of 1,725 pCi/L, and median of 1,805 pCi/L. High radon levels (> 4,000 pCi/L) are most common in regions of Jurassic granite, whereas low radon areas are found in regions of sedimentary rock. In conclusion, the distribution and occurrence of radionuclides are intimately related to the basic geological characteristics of the rocks in which the radiogenic minerals are primarily contained.

Groundwater Flow Analysis in Fractured Rocks Using Zonal Pumping Tests and Water Quality Logs (구간양수시험과 수질검층자료에 의한 균열암반내 지하수 유동 분석)

  • Hamm, Se-Yeong;Sung, Ig-Hwan;Lee, Byeong-Dae;Jang, Seong;Cheong, Jae-Yeol;Lee, Jeong-Hwan
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.411-427
    • /
    • 2006
  • This study aimed to recognize characteristics of groundwater flow in fractured bedrocks based on zonal pump-ing tests, slug tests, water quality logs and borehole TV camera logs conducted on two boreholes (NJ-11 and SJ-8) in the city of Naju. Especially, the zonal pumping tests using sin91e Packer were executed to reveal groundwater flow characteristics in the fractured bedrocks with depth. On borehole NJ-11, the zonal pumping tests resulted in a flow dimension of 1.6 with a packer depth of 56.9 meters. It also resulted in lower flow dimensions as moving to shallower packer depths, reaching a flow dimension of 1 at a 24 meter packer depth. This fact indicates that uniform permissive fractures take place in deeper zones at the borehole. On borehole SJ-8, a flow dimension of 1.7 was determined at the deepest packer level (50 m). Next, a dimension of 1.8 was obtained at 32 meters of packer depth, and lastly a dimension of 1.4 at 19 meters of packer depth. The variation of flow dimension with different packer depths is interpreted by the variability of permissive fractures with depth. Zonal pumping tests led to the utilization of the Moench (1984) dual-porosity model because hydraulic characteristics in the test holes were most suitable to the fractured bedrocks. Water quality logs displayed a tendency to increase geothermal temperature, to increase pH and to decrease dissolved oxygen. In addition, there was an increasing tendency towards electrical conductance and a decreasing tendency towards dissolved oxygen at most fracture zones.

Evaluation of Groundwater Quality Deterioration using the Hydrogeochemical Characteristics of Shallow Portable Groundwater in an Agricultural Area (수리지화학적 특성 분석을 이용한 농촌 마을 천부 음용지하수의 수질 저하 원인 분석)

  • Yang, Jae Ha;Kim, Hyun Koo;Kim, Moon Su;Lee, Min Kyeong;Shin, In Kyu;Park, Sun Hwa;Kim, Hyoung Seop;Ju, Byoung Kyu;Kim, Dong Su;Kim, Tae Seung
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.533-545
    • /
    • 2015
  • Spatial and seasonal variations in hydrogeochemical characteristics and the factors affecting the deterioration in quality of shallow portable groundwater in an agricultural area are examined. The aquifer consists of (from the surface to depth) agricultural soil, weathered soil, weathered rock, and bedrock. The geochemical signatures of the shallow groundwater are mostly affected by the NO3 and Cl contaminants that show a gradual downward increase in concentration from the upper area, due to the irregular distribution of contamination sources. The concentrations of the major cations do not varied with the elapsed time and the NO3 and Cl ions, when compared with concentrations in background groundwater, increase gradually with the distance from the upper area. This result suggests that the water quality in shallow groundwater deteriorates due to contaminant sources at the surface. The contaminations of the major contaminants in groundwater show a positive linear relationship with electrical conductivity, indicating the deterioration in water quality is related to the effects of the contaminants. The relationships between contaminant concentrations, as inferred from the ternary plots, show the contaminant concentrations in organic fertilizer are positively related to concentrations of NO3, Cl, and SO42− ions in the shallow portable groundwaters, which means the fertilizer is the main contaminant source. The results also show that the deterioration in shallow groundwater quality is caused mainly by NO3 and Cl derived from organic fertilizer with additional SO42− contaminant from livestock wastes. Even though the concentrations of the contaminants within the shallow groundwaters and the contaminant sources are largely variable, it is useful to consider the ratio of contaminant concentrations and the relationship between contaminants in groundwater samples and in the contaminant source when analyzing deterioration in water quality.

The Origin and Geochemical Behavior of Fluoride in Bedrock Groundwater: A Case Study in Samseung Area (Boeun, Chungbuk) (화강암 지역 암반 지하수 내 불소 이온의 기원 및 거동: 충북 보은 삼승면 일대의 현장 조사와 실내 실험 연구)

  • Chae, Gi-Tak;Koh, Dong-Chan;Choi, Byoung-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.555-566
    • /
    • 2008
  • Hydrogeochemical study in Samseung area (Boeun, Chungbuk) and waterrock interaction experiment using rock samples from the area were performed to elucidate the fluoride source in groundwater and explaining geochemical behavior of fluoride ion. Fluoride concentration of public water supply mostly using groundwater in Boeun area was significantly higher in South Korea. The maximum fluoride concentration of the study area was 3.9 mg/L, and 23% of samples exceeded the Korean Drinking Water Standard of fluoride (1.5 mg/L). The average concentration of fluoride was 1.0 mg/L and median was 0.5 mg/L. Because of high skewness (1.3), median value is more appropriate to represent fluoride level of this area. The relationships between fluoride ion and geochemical parameters ($Na^+$, $HCO_3$, pH, etc.) indicated that the degree of waterrock interaction was not significant. However, high fluoride samples were observed in $NaHCO_3$ type on Piper's diagram. The negative relationship between fluoride and $NO_3$ ion which might originate from surface contaminants was obvious. These results indicate that fluoride ion in groundwater is geogenic origin. The source of fluoride was proved by waterrock interaction batch test. Fluoride concentration increased up to 1.2 mg/L after 96 hours of reaction between water and biotite granite. However, the relationship between well depth and fluoride ion, and groundwater age and fluoride ion was not clear. This indicates that fluoride ion is not correlated with degree of waterrock interaction in this area but local heterogeneity of fluoriderich minerals in granite terrain. High fluoride concentration in Boeun area seems to be correlated with distribution of permeable structures in hard rocks such as lineaments and faults of this area. This entails that the deep bedrock groundwater discharges through the permeable structures and mixed with shallow groundwater.

Natural Baseline Groundwater Quality in Shingwang-myeon and Heunghae-eup, Pohang, Korea (포항시 신광면 및 흥해읍 일대 지하수의 배경수질 연구)

  • Lee, Hyun A;Lee, Hyunjoo;Kwon, Eunhye;Park, Jonghoon;Woo, Nam C.
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.469-483
    • /
    • 2020
  • The results of long-term groundwater level and quality monitoring can be used not only as the basic data for evaluating the impact of various disasters including climate change and establishing responses, but also as key data for predicting and managing geological disasters such as earthquakes. Some countries use groundwater level and quality monitoring for researches to predict earthquakes and to assess the impacts of the earthquake disaster. However, a few cases in Korea report on individual groundwater quality factors (i.e., dissolved ions) observed before and after the earthquakes, being different from other countries. To establish the abnormality criteria for groundwater quality in Pohang, groundwater samples were collected and analyzed five times from 14 agricultural or private wells existing in Shingwang-myeon and Heunghae-eup. As a result of the analysis, it was found that Ca2+ was the dominant cation in Shingwang-myeon, while Na+ was the dominant cation in Heunghae-eup. The elevated NO3- concentration in Shingwang-myeon is contributed to the agricultural activity in the area. A high concentration of Fe was detected in a well on Heunghae-eup; the concentration exceeded the drinking water standard by nearly 100 times. Relatively higher dissolved ions were observed in the groundwater of Heunghae-eup, and it is considered as the result of the flow velocity difference and water-rock reaction accompanying the difference in bedrock and sediment characteristics. The groundwater of Shingwang-myeon appeared to be most affected by the weathering of granite and silicates, while that of Heunghae-eup was mainly affected by the weathering of silicates and carbonate. The background concentrations (baselines) of groundwater Shingwang-myeon and Heunghae-eup was identified through the survey; however, the continuous monitoring is required to monitor the possible changes and the repeatability of seasonal variation.

Hydrological Significance on Interannual Variability of Cations, Anions, and Conductivity in a Large Reservoir Ecosystem (대형 인공호에서 양이온, 음이온 및 전기전도도의 연변화에 대한 수리수문학적 중요성)

  • An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.34 no.1 s.93
    • /
    • pp.1-8
    • /
    • 2001
  • During April 1993 to November 1994, cations, anions, and conductivity were analyzed to examine how summer monsoon influences the ionic content of Taechung Reservoir, Korea. Interannual variability of ionic content reflected hydrological characteristics between the two years(high-flood year in 1993 vs. draught year in 1994). Cations, anions and conductivity were lowest during peak inflow in 1993 and highest during a drought in 1994. Floods in 1993 markedly decreased total salinity as a result of reduced Ca$^{2+}$ and HCO$_{3}\;^{-}$ and produced extreme spatial heterogeneity (i.e., longitudinal, vertical, and horizontal variation) in ionic concentrations. The dominant process modifying the longitudinal (the headwaters-to-downlake) and vertical (top-to-bottom) patterns in salinity was an interflow current during the 1993 monsoon. The interflow water plunged near a 27${\sim}$37 km-location (from the dam) of the mid-lake and passed through the 10${\sim}$30m stratum of the reservoir, resulting in an isolation of epilimnetic high conductivity water (>100 ${\mu}$S/cm) from advected river water with low conductivity (65${\sim}$75 ${\mu}$S/cm), During postmonsoon 1993, the factors regulating salinity differed spatially; salinity of downlake markedly declined as a result of dilution through the mixing of lake water with river water, whereas in the headwaters it increased due to enhanced CaCO$_{3}$ (originated from limestone/metamorphic rock) of groundwaters entering the reservoir. This result suggests an importance of the basin geology on ion compositions with hydrological characteristics. In 1994, salinity was markedly greater (p<0.001) relative to 1993 and ionic dilution did not occur during the monsoon due to reduced inflow. Overall data suggest that the primary factor influencing seasonal ionic concentrations and compositions in this system is the dilution process depending on the intensity of monsoon rainfall.

  • PDF

The Characteristics of Runoff from a Forest Watershed with Different Vegetation (식생이 다른 산림유역 유출수의 특성)

  • Lee, Ho-Beom;Park, Chan-Oh;Shin, Dae-Yewn
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.3
    • /
    • pp.311-316
    • /
    • 2007
  • In this study, we investigated the presence of nitrogen, phosphorus, ions, heavy metals and other contaminations in the water stream and soil of the forest watershed with different geology and vegetations for one year from October 2004 to September 2005. Most of the nitrogen oxide in the soil was in the form of $NO_3^-$, and it appeared that nitrogen contents decreased as the soil depth increased. Nitrogen contents was highest in the basalt area showing 13.3 mg/g in the surface soil and 7.40 mg/g in the subsoil. Phosphorous contents showed no significant variations depending on the soil depth and was higher in the intermediate soil layer(60 cm) than in surface soil (30 cm) in granite and metamorphic rock areas. Nitrogenous compound in the soil water was 8.03 mg/L in the granite area of coniferous forest and 14.79 mg/L in the andesite area of the deciduous forest. Nitrogenous compound in the stream water was 5.53 mg/L in October and 6.99 mg/L in January in the granite area of the coniferous forest and $3.61\sim5.11$ mg/L in the andesite area of the deciduous forest. Phosphates in runoff and stream water were similar in coniferous with in deciduous forests, showing a slight increase(0.090$\sim$0.179 mg/L) in the basalt area. In the coniferous forest, pH showed a significant positive correlation with EC, $Ca^{2+}$ and $Cl^-$ at p < 0.01, and showed a negative correlation with S-Fe and S-Al. Electroconductivity showed a significant correlation of 0.601 with $Ca^{2+}$ and of -0.586 with $NO_3^-$ at p<0.01, and showed a significant correlation of 0.301 with $SO_4^{2-}$ and of -0.295 with S-Fe at p < 0.05. In the deciduous forest, pH showed a positive correlation with $Ca^{2+}$ at p < 0.05, and showed a negative correlation with $K^+$, S-Fe and S-Al at p < 0.01. Electroconductivity showed a significant positive correlation with $Ca^{2+}$ and $Cl^-$ at p < 0.05 and with $NO_3^-$ at p < 0.01.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Geophysical Study on the Ultramafic Rocks of Chungnam Province, Korea: Characteristics of Seismic Velocity (충남지역 초염기성 암체의 지구물리학적 연구: 탄성파 속도 특성)

  • Suh, Man-Cheol;Woo, Young-Kyun;Song, Suck-Hwan;Tianyao, Hao
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.349-358
    • /
    • 2000
  • Compressional and shear wave velocities (Vp and Vs) and densities have been measured for serpentinite, amphibolite, amphibole and biotite schist, and gneiss from western part of Chungnam Province at room temperature. Ranges of the density are 2.6${\sim}$2.86g/cm$^3$ for serpentinite, 2.25${\sim}$2.81g/cm$^3$ for talc, and 2.74${\sim}$3.07g/cm$^3$ for metamorphic rocks. Of these rocks, talc shows wider ranges than serpentinite and amphibolites due to its metamorphic process from serpentinite. Values of Vp and Vs are 5719${\sim}$6062m/s and 2898${\sim}$3351m/s for serpentinites, 4019${\sim}$5478m/s and 2241/${\sim}$2976m/s for talc, 5375${\sim}$6372m/s and 3042${\sim}$3625m/s for amphibolite, 5290${\sim}$5499m/s and 2968${\sim}$3137m/s for schist, and 4788m/s and 2804m/s for gneiss, respectively. Velocity of P wave increases 1.47 times faster than S wave with increase of density. The results of seismic velocity measurement show anisotropy, higher velocity across than along the schistocity of rocks, especially in metamorphic rocks. This fact indicates that there were regional metamorphism related with tectonic forces. Values of seismic velocity increase with increasing pressure from 20 MPa to 70 MPa, especially in metamorphic rocks. Overall recalculated Vp and Vs values suggest that the serpentinite indicates for upper mantle in the respects of seismic characteristics, in spite of high degree of serpentinization. In addition, those of the amphibolite do for low crust, and gneiss and schist for upper crust.

  • PDF

Time-lapse crosswell seismic tomography for monitoring injected $CO_2$ in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka의 육상 대수층에 주입된 $CO_2$의 관찰을 위한 시간차 시추공간 탄성파 토모그래피)

  • Saito, Hideki;Nobuoka, Dai;Azuma, Hiroyuki;Xue, Ziqiu;Tanase, Daiji
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2006
  • Japan's first pilot-scale $CO_2$ sequestration experiment has been conducted in Nagaoka, where 10400 t of $CO_2$ have been injected in an onshore aquifer at a depth of about 1100 m. Among various measurements conducted at the site for monitoring the injected $CO_2$, we conducted time-lapse crosswell seismic tomography between two observation wells to determine the distribution of $CO_2$ in the aquifer by the change of P-wave velocities. This paper reports the results of the crosswell seismic tomography conducted at the site. The crosswell seismic tomography measurements were carried out three times; once before the injection as a baseline survey, and twice during the injection as monitoring surveys. The velocity tomograms resulting from the monitoring surveys were compared to the baseline survey tomogram, and velocity difference tomograms were generated. The velocity difference tomograms showed that velocity had decreased in a part of the aquifer around the injection well, where the injected $CO_2$ was supposed to be distributed. We also found that the area in which velocity had decreased was expanding in the formation up-dip direction, as increasing amounts of $CO_2$ were injected. The maximum velocity reductions observed were 3.0% after 3200 t of $CO_2$ had been injected, and 3.5% after injection of 6200 t of $CO_2$. Although seismic tomography could map the area of velocity decrease due to $CO_2$ injection, we observed some contradictions with the results of time-lapse sonic logging, and with the geological condition of the cap rock. To investigate these contradictions, we conducted numerical experiments simulating the test site. As a result, we found that part of the velocity distribution displayed in the tomograms was affected by artefacts or ghosts caused by the source-receiver geometry for the crosswell tomography in this particular site. The maximum velocity decrease obtained by tomography (3.5%) was much smaller than that observed by sonic logging (more than 20%). The numerical experiment results showed that only 5.5% velocity reduction might be observed, although the model was given a 20% velocity reduction zone. Judging from this result, the actual velocity reduction can be more than 3.5%, the value we obtained from the field data reconstruction. Further studies are needed to obtain more accurate velocity values that are comparable to those obtained by sonic logging.