• Title/Summary/Keyword: Rock discontinuity

Search Result 219, Processing Time 0.021 seconds

Discontinuity Analysis Method using Reverse Engineering (역분석공학기법을 이용한 불연속면 분석 프로그램 개발)

  • Park, Eui-Seob;Jung, Yong-Bok;Ryu, Chang-Ha;SunWoo, Choon;Choi, Yong-Kun;Heo, Sung;Cheon, Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.165-174
    • /
    • 2007
  • The technique, which reproduces the figures of objects from measured data of the objects using 3-D laser scanner, is called reverse engineering. Recently, research studies into applications of reverse engineering to rock engineering are increasing in number, in the discontinuity surveys for rock slopes out of man's reach, or rapid discontinuity surveys for wide range areas. For analysis of discontinuity using reverse engineering, a program for processing point clouds data from the 3-D laser scanner, for sampling from these point clouds data, and finally analyzing the discontinuity is needed. However, existing programs rarely have sufficient functions to properly analyze the discontinuities. In this study, a program was developed, which can automatically sample discontinuities from the point clouds data which measured in a rock slope using a 3-D laser scanner, and which can also undertake statistical analysis of the discontinuities. This developed program was verified by the application of discontinuity surveys in a rock slope and a tunnel. By undertaking the discontinuity survey using a 3-D laser scanner and the developed program, the feasibility and rapidity of such surveys is expected to improve in areas out of man's reach in geotechnical surveys. Taking into consideration the fact that the international level of related techniques is at a rudimentary stage, the possibility of prior occupation of a broad market is also expected.

Ultrasonic Reflection Imaging for Discontinuity Detection of Rock Mass - Laboratory Study (암반 불연속면 탐측을 위한 초음파 반사 이미지 - 실내실험)

  • Lee, Jong-Sub;Kim, Seung-Sun;Kim, Dong-Hyun;Kim, Uk-Young;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.1
    • /
    • pp.51-65
    • /
    • 2007
  • The purpose of this study is the development and application of a high resolution ultrasonic wave imaging system to detect discontinuity plane in lab-scale rock models. This technique is based on received time series which capture the multiple reflections at interface. This study includes the fundamental aspects of ultrasonic wave propagation in rock mass, the selection of the optimal ultrasonic wave transducer, data gathering, a signal processing, imaging methods, and experiments. Experiments are carried out by the horizontal movement and rotation devices. Experimental studies show the discontinuity is well detected by the horizontal movement and rotation devices under water. Furthermore, the discontinuity and the cavity on the plaster block are identified by the rotation device. This study suggests that the new method may be an economical and effective tool for the detection of the discontinuity on rock mass.

Engineering Problems in Rock Discontinuity (암반 불연속면의 공학적 문제-(General Report))

  • 신희순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-184
    • /
    • 2001
  • Rock masses usually contain such features as bedding planes, faults, fissures, fractures, joints and other mechanical defects which, although formed from a wide range of geological processes, posses the common characteristics of low shear strength, negligible tensile strength and high fluid conductivity compared with the surrounding rock material. In the engineering context here, the discontinuities can be the single most important factor governing the deformability, strength and permeability of the rock mass. Moreover, a particularly large and persistent discontinuity could critically affect the stability of any surface or underground excavation. For these reasons, it is necessary to develop a thorough understanding of the geometrical, mechanical and hydrological properties of discontinuities and the way in which these will affect rock mechanics and hence rock engineering.

  • PDF

Development of Rock Slope Survey and Analysis System using GIS

  • Park, H. J.;Chang, B. S.;Lee, S.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.144-146
    • /
    • 2003
  • Techniques for rock slope management and assessment must be developed for the prevention and mitigation of rock fall hazards. To enable this, the rock discontinuity such as fault and joint data must be surveyed, analysed and managed. For this, the discontinuities were detected by automatic and semi-automatic method using DEM and ortho-rectified image of rock slope and the rock slope analysis and management system was developed using GIS. Using the system, slope locations and discontinuities data were constructed to spatial database. The system is consist of ‘Data Management’, ‘Rock Slope DB’, ‘Basic Information’, ‘Image Processing’, ‘Image Analys ing’, ‘Edit’, ‘View’, ‘Theme’, ‘Graphic’, ‘Window’ and ‘Help’. The system was developed using avenue of ArcView 3.2.

  • PDF

A review of experimental and numerical studies on crack growth behaviour in rocks with pre-existing flaws

  • G. Sivakumar;V.B. Maji
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.333-366
    • /
    • 2023
  • Rock as a mass generally exhibits discontinuities, commonly witnessed in rock slopes and underground structures like tunnels, rock pillars etc. When these discontinuities experiences loading, a new crack emerges from them which later propagates to a macro scale level of failure. The failure pattern is often influenced by the nature of discontinuity, geometry and loading conditions. The study of crack growth in rocks, namely its initiation and propagation, plays an important role in defining the true strength of rock and corresponding failure patterns. Many researchers have considered the length of the discontinuity to be fully persistent on rock or rock-like specimens by both experimental and numerical methods. However, only during recent decades, there has been a substantial growth in research interest with non-persistent discontinuities where the crack growth and its propagation phenomenon were found to be much more complex than persistent ones. The non-persistence fractures surface is generally considered to be open and closed. Compared to open flaws, there is a difference in crack growth behaviour in closed or narrow flaws due to the effect of surface closure between them. The present paper reviews the literature that has contributed towards studying the crack growth behaviour and its failure characteristics on both open and narrow flaws subjected to uniaxial and biaxial compression loading conditions.

A study of the Sampling Bias Correction on Joint Data from 1D Survey Line (1D 측선에 의한 절리 자료에 대한 편향 보정 기법에 관한 연구)

  • 엄정기
    • Tunnel and Underground Space
    • /
    • v.13 no.5
    • /
    • pp.344-352
    • /
    • 2003
  • The procedures to correct sampling biases for discontinuity data obtained from 1D survey line(borehole or scanline) is addressed. The Probability of intersection between the survey line and a circular discontinuity is considered, and a correction far orientation bias is developed assuming discontinuities as equivalent circular disks. The correction incorporates the effect of the angle between the direction of survey line and each discontinuity plane belonging to the discontinuity cluster, size of each discontinuity and length of the survey line. A procedure is provided to estimate unbiased discontinuity spacing parameters using the discontinuity spacing data based on the measurements carried out on a finite length of the survey line.

A Study on the Analysis of the Slope Stability Considering Clay Filling in Discontinuity (불연속면내 점토충전물을 고려한 사면 안정해석 연구)

  • Min, Kyong-Nam;Ahn, Tae-Bong;Yang, Seung-Jun;Baek, Seon-Gi;Lee, Tae-Sun
    • Tunnel and Underground Space
    • /
    • v.17 no.3 s.68
    • /
    • pp.175-185
    • /
    • 2007
  • When filling material such as clay is included along the discontinuity, it may cause instability on a slope even if the direction of discontinuity works in a positive way. In the study area, slope sliding occurred at the boundary between a clay filling material and weathered soil because the physical properties differ across the boundary; and this is very similar to the situation where foliation in a rock works as a weak zone during a structural behavior, causing an inter-layer slip. In most analysis, if there exists a clay filling material, a single discontinuity is assumed to perform analysis. In those cases, the discontinuity is modeled as a slip surface within clay. Therefore, the characteristics of the boundary are not considered in the analysis, so that ultimately the physical property of clay usually prevails. The result of evaluating the slope stability affected by clay filling material shows the significant difference in the safety level due to the strength parameter depending on the failure type of the discontinuity by a filling material.

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.

Review of Applicability of Analysis Method based on Case Study on Rainfall-Induced Rock Slope Failure (강우에 의한 암반사면 파괴 해석 사례 연구를 통한 해석방법 적용성 검토)

  • Jung, Jahe;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.267-274
    • /
    • 2017
  • Behavior of rock mass depend on the mechanical properties of intact rock and geometrical property of discontinuity distributed in rock mass. In case of rock slope, particularly, location of slope failure surface and behavior after failure are changed due to discontinuities. In this study, two 3D slope stability analysis methods were developed for two different failure types which are circular failure and planar failure, considering that failure type of rock slope is dependent on scale of discontinuity which was then applied to real rock slope to review the applicability. In case of circular failure, stable condition was maintained in natural dry condition, which however became unstable when the moisture content of the surface was increased by rainfall. In case of planar failure, rock slope become more unstable comparing to dry condition which is attributable to decrease in friction angle of discontinuity surface due to rainfall. Viewing analysis result above, analysis method proved to have well incorporated the phenomenon occurred on real slope from the analysis result, demonstrating its applicability to reviewing the slope stability as well as to maintaining the slope.

Case of slope stability in weathered metamorphic rock (풍화된 변성암 사면의 안정대책 사례)

  • Kim, Jae-Hong;Park, Chal-Sook;Jeon, Je-Sung;Hong, Won-Pho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1400-1405
    • /
    • 2008
  • Execute surface of the earth geological survey for stability analysis of stealing cutting sides and investigated wide area nature of soil structure. Inflected DIPS that measure discontinuity's direction that develop to slope and is slope stability a wide use program for Stereographic Projection Method analysis that utilize geometrical correlation of stealing four sides and discontinuity surface. It is principle that angle of internal friction that is basis element of stability estimation applies direct shear test result on joint side, Examination is impossible by case execution, suppose by 30 angles that apply more conservatively in base rock slope sides usually and achieved analysis. When analyze, consider discontinuity's various adult that develop in research slope, after conduct first each discontinuity different assay falling into fault, joint, executed stability estimation which synthesize whole discontinuity data. When ailment element is recognized as analysis result, wished to present stability countermeasure way of most suitable to take into account of execution, stability, economic performance.

  • PDF