• Title/Summary/Keyword: Rock condition

Search Result 907, Processing Time 0.027 seconds

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

Petrology and petrochemistry of the so called "Ganghwa syenitic rock" in southeastern part of Ganghwa Island (강화도(江華島) 동남부(東南部)에 분포(分布)하는 소위(所謂) 강화섬장암질암(江華閃長岩質岩)에 대(對)하여)

  • Kim, Yong-Jun;OH, Mihn-Soo
    • Economic and Environmental Geology
    • /
    • v.11 no.2
    • /
    • pp.47-57
    • /
    • 1978
  • The study focused on the petrology and petrochemistry of the so called "Ganghwa syenitic rocks" which intruded into metasediment of basement in southeastern part of Ganghwa Island. The geologic sequence of the mapped area was shown in table 1, 10 model analyses and 7 chemical analyses on the rock samples taken from the Ganghwa syenitic rocks and Manisan granite have been used to discuss the nomenclature of the rocks and petrological relationship between rock types. The petrograpical and petrochemical features based on, the analyses are as follows: 1) Ganghwa syenitic rocks consist of Ganghwa alkali syenite and Ganghwa diorite porphyry which based on the classification of the subcommision on systematics of igneous of IGUS. Ganghwa diorite porphyry which occured as dike forms are intruded into Ganghwa alkali syenite. The rock forming minerals of Ganghwa alkali syenite are composed of perthite, plagioclase, quartz, hornblend and chlorite in major, and zircon, apatite, sericite and magnetite in minor. Ganghwa diorite porphyries consist of plagioclase, biotite, hornblend, orthoclase and chlorite, with, porphyritic texture. 2) In silica-oxides variation (Fig. 2) and AMF diagram (Fig_ 3), the Ganghwa alkali syenite is similar to the trend of Daly's average basalt-andesite-dacite-rhyolite than Skaergaard which shows the trend of the fractional crystallization of magma, and equivalent to the alkali rock series by Peacock. 3) The general trend of data points shift to plagioclase, and are superimposed on the alkali rich terminal part of the granodiorite province of SW Finland in normative Q-Kf-Pl(Fig. 4) and Or-Ab-An diagram respectively. The above-mentioned evidences suggested that the Ganghwa syenitic rocks are the differential products resulted by assimilation of intermediated magma and metasedment rock under relatively rapid cooling condition.

  • PDF

A numerical study on evaluation of unsupported pillar strength in the room and pillar method (주방식 공법에서 무지보 암주의 강도 산정에 관한 수치해석적 연구)

  • Lee, Chulho;Chang, Soo-Ho;Shin, Hyu-Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.4
    • /
    • pp.443-453
    • /
    • 2013
  • This study aims to evaluate the mechanical behaviors of unsupported rock pillars in a room-and-pillar underground structure by a series of numerical analyses. In addition, rock pillar strengths estimated by a few empirical equations proposed for underground mines are compared with those from numerical analyses. Based on the results from the numerical analysis, the ratio of pillar strength to rock mass strength increases as the ratio of the width of a pillar to its height becomes bigger. It means that higher ratio of pillar width to its height is much more favorable for stabilizing a room-and-pillar underground structure. Especially, unsupported pillar strengths estimated from numerical analyses are higher than rock mass strength when the ratio of pillar width to height is approximately over 1.5. It is also found that the choice of an empirical equation appropriate for a given geometric condition of a pillar is important for its feasible application to the stability analysis of a pillar in the room-and-pillar method.

Self-healing capacity of damaged rock salt with different initial damage

  • Chen, Jie;Kang, Yanfei;Liu, Wei;Fan, Jinyang;Jiang, Deyi;Chemenda, Alexandre
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.615-620
    • /
    • 2018
  • In order to analyze the healing effectiveness of rock salt cracks affected by the applied stresses and time, we used the ultrasonic technology to monitor the ultrasonic pulse velocity (UPV) variations for different initial stress-damaged rock salts during self-healing experiments. The self-healing experiments were to create different conditions to improve the microcracks closure or recrystallized, which the self-healing effect of damaged salt specimens were analyzed during the recovery period about 30 days. We found that: The ultrasonic pulse velocity of the damaged rock salts increases rapidly during the first 9 days recovery, and the values gradually increase to reach constant values after 30 days. The damaged value and the healed value were identified based on the variation of the wave velocity. The damaged values of the specimens that are subject to higher initial damage stress are still keeping in large after 30 days recovery under the same recovery condition It is interesting that the damage and the healing were not in the linear relationship, and there also existed a damage threshold for salt cracks healing ability. When the damage degree is less than the threshold, the self-healing ratio of rock salt is increased with the increase in damage degree. However, while the damage degree exceeds the threshold, the self-healing ratio is decreased with the increase in damage.

In Case of Treatment of PEC4 Hydroseeding Measures for Revegetation of Rock Cut-Slopes (암비탈면 녹화용 환경친화적 PEC4 공법의 시공)

  • Kim, Kyung-Hoon;Kim, Hak-Young;Hwang, Ae-Min;Lee, Seung-Eun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.4
    • /
    • pp.64-73
    • /
    • 1999
  • This study was conducted to find out the effects of hydroseeding material and seed mixture on the revegetation of rock cut-slopes by PEC4 (Polymer-Ecology-Control) Hydroseeding Measures. PEC4 hydroseeding material was applied to four cut-slopes using hydroseeding measures from April to August, 1999, and the field survey was carried out by monthly. PEC4 material consisted of bark compost and organic soil amendments. This material has high content of organic matter and high level of water holding capacity. PEC4 hydroseeding material shows low level of soil hardness, so it gives to good condition for seed germinating and plant growing in early stage. PEC4 material attached at rock cut-slopes by two types of adhesive agent was not eroded by rainfall. The plant coverage and number of plant species were affected by mixing ratio of seeds and seeding timing. From the viewpoint of plant establishment, the optimal hydroseeding timing of mixed seeds for plant growth seems to be in May. Most of the plant seeds were germinated well and they covered rock cut-slopes so quickly and effectively. Plant importance value of Silene armeria and Platycodon grandiflorum. were higher than any other seeded-native species in the competition between native species and exotic species, so they have enough possibility to be used for slope revegetation works. Thus it leads to conclusion that the revegetation method used in this experiment was a very effective method for plant establishment on rock cut-slopes.

  • PDF

Numerical simulation on mining effect influenced by a normal fault and its induced effect on rock burst

  • Jiang, Jin-Quan;Wang, Pu;Jiang, Li-Shuai;Zheng, Peng-Qiang;Feng, Fan
    • Geomechanics and Engineering
    • /
    • v.14 no.4
    • /
    • pp.337-344
    • /
    • 2018
  • The study of the mining effect influenced by a normal fault has great significance concerning the prediction and prevention of fault rock burst. According to the occurrence condition of a normal fault, the stress evolution of the working face and fault plane, the movement characteristics of overlying strata, and the law of fault slipping when the working face advances from footwall to hanging wall are studied utilizing UDEC numerical simulation. Then the inducing-mechanism of fault rock burst is revealed. Results show that in pre-mining, the in situ stress distribution of two fault walls in the fault-affected zone is notably different. When the working face mines in the footwall, the abutment stress distributes in a "double peak" pattern. The ratio of shear stress to normal stress and the fault slipping have the obvious spatial and temporal characteristics because they vary gradually from the higher layer to the lower one orderly. The variation of roof subsidence is in S-shape which includes slow deformation, violent slipping, deformation induced by the hanging wall strata rotation, and movement stability. The simulation results are verified via several engineering cases of fault rock burst. Moreover, it can provide a reference for prevention and control of rock burst in a fault-affected zone under similar conditions.

Prediction of Strength for Transversely Isotopic Rock Based on Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 강도 예측)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.119-127
    • /
    • 2007
  • Based on the critical plane approach, a methodology far predicting the anisotropic strength ot transversely isotropic rock is Proposed. It is assumed that the rock failure is governed by Hoek-Brown failure criterion. In order to establish an anisotropic failure function, Mohr envelope equivalent to the original Hoek-Brown criterion is used and the strength parameters m, s are expressed as scalar functions of orientation. The conjugate gradient method, which is one of the robust optimization techniques, is applied to the failure function for searching the orientation giving the maximum value of the anisotropic function. While most of the existing anisotropic strength models can be applied only when the stress condition is the same as that of conventional triaxial compression test, the proposed model can be applied to the general 3-dimensional stress conditions. Through the simulation of triaxial compression tests for transversely isotropic rock sample, the validity of the proposed method is investigated by comparing the predicted triaxial strengths and inclinations of failure plane.

A Case Study on the Stability Analysis of a Cutting Slope Composed of Weathered Granite and Soil (화강풍화암 및 풍화토층 지역 깍기 비탈면의 안정성 검토 사례 연구)

  • Han, Kong-Chang;Ryu, Dong-Woo;Cheon, Dae-Sung;Hong, Eun-Soo
    • Tunnel and Underground Space
    • /
    • v.18 no.4
    • /
    • pp.289-299
    • /
    • 2008
  • Based on the case study on the causes for the failure of cutting slope composed of weathered rock and soil, the factors influencing the design of a cutting slope have been examined, This type of rock and soil is widely distributed on the region whose parent rock is granite. To analyze the stability of the cutting slope, the following series of progress has been conducted: (1) ground characterization by geological survey and ground investigation, (2) the safety factor examination by limit equilibrium analysis and numerical analysis and (3) the comparison and analysis of rainfall and failure history. As a result, the main factors to cause the failure is determined to be the decrease of shear strength in the upper parts whose ground condition is weakened during localized heavy rain. Moreover, the analysis indicates the failure is also closely related to the groundwater inflow path. On the base of this investigation, a reinforcement method is proposed to ensure the stability of the cutting slope.

Tunnel-Lining Analysis in Consideration of Seepage and Rock Mass Behavior (투수 및 암반거동을 고려한 터널 라이닝의 거동 분석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Nam, Seok-Woo;Lee, In-Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.359-368
    • /
    • 2006
  • After construction, time-variant seepage and long-term underground motion are representative factors to understand the abnormal behavior of tunnels. In this study, numerical models have been developed to analyze the behavior of tunnels associated with seepage and long-term underground motion. Possible scenarios have been investigated to establish causes-and-results mechanisms. Various parameters such as permeability of tunnel filter, seepage condition, water table, long-term rock mass load, size of damaged zone due to excessive blasting have been investigated. These are divided into two sub-parts depending on the tunnel type and major loading mechanisms depending on the types. For the soft ground tunnels, the behavior associated with seepage conditions has been studied and the effect of permeability change in tunnel-filter and the effect of water-table change which are seldom measurable are investigated in detail. For the rock mass tunnels, tunnel behavior associated with the visco-plastic behavior of rock mass has been studied and the long-term rock mass loads as a result of relaxation and creep have been considered.

Mathematical Understanding of the Saint-Venant Approximation in Analysis of a Transverse Isotropy (평면이방성 분석에서 Saint-Venant 근사식의 수학적 해석)

  • Park, Chulwhan;Park, Chan;Park, Jung-Wook;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.26 no.5
    • /
    • pp.363-374
    • /
    • 2016
  • All five independent elastic constants of a transversely isotropic rock sometimes need to be determined from a single specimen. Saint-Venant approximation has been widely used for a long time in the analysis of single specimen test. This paper has proven how this empirical equation can be mathematically transformed into a form of the apparent Young's modulus based on theory of elasticity. The transformed equation is a monotonous function on anisotropic angle and can be useful in the analysis of the in-situ stress measurement in an anisotropic rock mass. The estimations of data in literatures have shown that the measured values of $G^2$ are uniform on anisotropic angles and smaller than that of Saint-Venant's case. This decrement may be caused by sliding of the interface of strata and the decrement rate is inferred to relate well with the combination of bonding condition of strata and strength of rock material. Accumulation of these kinds of studies in the future enables to define the decrement and to determine elastic constants of a transversely isotropic rock from a single specimen from modifying Saint-Venant approximation.