• Title/Summary/Keyword: Rock bolts

Search Result 69, Processing Time 0.023 seconds

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Numerical Study on the Behavior of Fully Grouted Rock Bolts with Different Boundary Conditions (경계조건의 변화에 따른 전면접착형 록볼트 거동의 수치해석적 연구)

  • Lee, Youn-Kyou;Song, Won-Kyong;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.267-276
    • /
    • 2010
  • In modern rock engineering practice, fully grouted rock bolting is actively employed as a major supporting system, so that understanding the behavior of fully grouted rock bolts is essential for the precise design of rock bolting. Despite its importance, the supporting mechanism of rock bolts has not been fully understood yet. Since most of existing analytical models for rock bolts were developed by drastically simplifying their boundary conditions, they are not suitable for the bolts of in-situ condition. In this study, 3-D elastic FE analysis of fully grouted rock bolts has been conducted to provide insight into the supporting mechanism of the bolt. The distribution of shear and axial stresses along the bolt are investigated with the consideration of different boundary conditions including three different displacement boundary conditions at the bolt head, the presence of intersecting rock joints, and the variation of elastic modulus of adjacent rock. The numerical result reveals that installation of the faceplate at the bolt head plays an important role in mobilizing the supporting action and enhancing the supporting capabilities of the fully grouted rock bolts.

Basic Study for Theoretical Design of Rock Blots at Seong Ju Tunnel (성주 터널에 사용될 Rock Bolt의 이론적인 설계 기준에 관하여)

  • 강선덕
    • Explosives and Blasting
    • /
    • v.16 no.2
    • /
    • pp.23-33
    • /
    • 1998
  • This study has been carried out to design the standards of rock bolts which are recommended to be used for supporting material in Seong Ju tunnel, Under recently planned to construct. Due to the weak bedding rocks along the Tunnel, NATM supporting method is assumed to be applied and the design and calculation for rock bolts which are important material for this supporting method. Though the study, the results obtained are as follows. 1) The rocks defined s coarse sandstone, fine sandstone, medium sandstone, sandy shale and silty shale are normal rocks in strength, and black shale, greywacke and conglomerate are weak rocks in strength. 2) When the length of 3∼4meters of rock bolts are used, the distances of bolts are supposed to be 1.3∼1.8m in sandstone and 1.3∼2.0m in shale and for greywacke the distance should be 1.5m.

  • PDF

Improving support performances of cone bolts by a new grout additive and energy absorber

  • Komurlu, Eren
    • Advances in materials Research
    • /
    • v.11 no.3
    • /
    • pp.237-250
    • /
    • 2022
  • The cone bolts with expanded front ends supply improved anchoring performances and increase energy absorbing capacities due to ploughing in the grouted drills. Within this study, use of a novel energy absorber for the cone bolt heads were investigated to assess its design in terms of supplying high support performances. Additionally, different grout material designs were tested to investigate whether the energy absorption capacities of the rock bolts can be improved using a silicone based thermoset polymer (STP) additive. To determine load bearing and energy absorption capacities, a series of deformation controlled pull-out tests were carried out by using bolt samples grouted in rock blocks. According to the results obtained from this study, maximum load bearing capacities of cone bolts are similar and mostly depend on the steel material strength, whereas the energy absorption capacity was determined to significantly vary in accordance with the displacement limits of the shanks. As a result of using STP additive and new polyamide absorber rings, displacement limits without the steel failure increase. The STP additive was found to improve the energy absorption capacities of grouted cone bolts. The absorber rings designed within this study were also assessed to be highly effective and able to double up the energy absorption capacities of the cone bolts.

Reinforcing Effect of Pre-Tensioned Rock Bolts in the Jointed Rocks Condition (록볼트 긴장에 의한 수평절리암반의 보강효과)

  • An, Joung-Hwan;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.388-396
    • /
    • 2009
  • Rock bolt is one of the most important supports for tunnelling to prevent excessive ground relaxation at the primary tunnel excavation stage. It forms a ground arch band by confining the ground around a tunnel. Rock bolt has various effects, such as support or hanging effect, internal pressure effect, arching effect, ground improvement effect etc. Most studies on rock bolt focused on the concept of support, but only a few researches on the ground reinforcing effect by pre-tensioning a rock bolts. In this study, large scale model tests are performed to investigate the ground reinforcing effect of rock bolts for regularly jointed rocks. Simple beam model was built to find out the reinforcing effect of jointed rocks, which was reinforced by pre-tensioned rock bolts. Settlement of model beam was analyzed through measuring its sagging for various installation intervals.

Integrity evaluation of rock bolts in the field by using hammer-impact reflection method (해머 타격 반사법을 이용한 현장 록볼트 건전도 평가)

  • Yu, Jung-Doung;Bae, Myeong-Ho;Lee, Yong-Jun;Min, Bok-Ki;Lee, In-Mo;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2009
  • Rock bolts and shotcrete play a crucial role as a main support system in the underground space. Thus, the safety of the underground space may be affected by the defect of rock bolts. In order to evaluate the rock bolt integrity by using non-destructive technique, the transmission method of the guided ultrasonic waves, which are generated by using the piezo disk elements has been successfully performed. The energy generated by the piezo disk elements, however, is not enough for the rock bolts in the field. In addition, the piezo disk elements should be installed at the end of the steel bar during construction of the rock bolts. The purpose of this study is the devolvement of the reflection method, which may generate enough energy, and the application in the field rock bolts. Both laboratory and field tests are carried out. The guided ultrasonic waves with high energy are generated by the hammer impact with the center punch, and the AE sensor is used to measure the reflected guided waves. The received guided waves are analyzed by the wavelet transform. The peak value of the wavelet transform produces the energy velocity, which is used for the evaluation of the rock bolt integrity. The energy velocity increases with an increase in the defect ratio in both laboratory and field rock bolts. This study demonstrates that the hammer-impact reflection method may be a suitable method for the evaluation of the rock bolt in the field.

Experimental study on pullout capacity on friction type steel pipe rock bolt to use elastic restoring force and existing rock bolts (탄성복원력을 이용한 마찰형 강관 록볼트 및 기존 록볼트에 대한 인발력 실험연구)

  • Moorak Son;Jihyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.6
    • /
    • pp.459-468
    • /
    • 2023
  • In this study, an experiment on pullout capacity was conducted of rock bolts using grouting materials such as cement mortar and resin, which are widely used, and a newly proposed steel pipe friction type rock bolt using elastic restoring force, and the results were compared and analyzed. The experimental results showed that the pullout capacity on the rock bolts with cement mortar under a dry condition (no ground water) was relatively larger than the rock bolts with resin and the steel pipe. Nevertheless, the friction type steel pipe rock bolt to use elastic restoring force is expected to be useful in the field particularly where groundwater exists and it affects the loss and curing of grouting materials such as cement mortar or resin. In addition, it was found to have the advantage of being easy and quick to install.

Resisting Behavior of Fully-Grouted Rock Bolts with Compressible Spacers (압축성 간격재를 설치한 전면접착식 볼트의 인발저항 거동)

  • Hwang, Yong-Sub;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.377-385
    • /
    • 2011
  • In order to prove the applicability of rock bolts with compressible spacers, laboratory model tests and large scale model tests were conducted. Laboratory model tests were performed in various distance of compressible spacers to determine the optimal distance of compressible spacers. The optimal distance of compressible spacers was found that is 1/4 of rock bolts unit length. Large scale model tests that the size was 0.6 m (diameter) ${\times}$ 4.45 m (length) were conducted. Test results showed that pull out resistance could be increased up to 15% larger than that of unused case by using compressible spacers.

Investigating the supporting effect of rock bolts in varying anchoring methods in a tunnel

  • Wang, Hongtao;Li, Shucai;Wang, Qi;Wang, Dechao;Li, Weiteng;Liu, Ping;Li, Xiaojing;Chen, Yunjuan
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.485-498
    • /
    • 2019
  • Pre-tensioned rock bolts can be classified into fully anchored, lengthening anchored and point anchored bolts based on the bond length of the resin or cement mortar inside the borehole. Bolts in varying anchoring methods may significantly affect the supporting effect of surrounding rock around a tunnel. However, thus far, the theoretical basis of selecting a proper anchoring method has not been thoroughly investigated. Based on this problem, 16 schemes were designed while incorporating the effects of anchoring length, pretension, bolt length, and spacing, and a systematic numerical experiment was performed in this paper. The distribution characteristics of the stress field in the surrounding rock, which corresponded to various anchoring scenarios, were obtained. Furthermore, an analytical approach for computing the active and passive strengthening index of the anchored surrounding rock is presented. A new fully anchoring method with pretension and matching technology are also provided. Then, an isolated loading model of the anchored surrounding rock was constructed. The physical simulation test for the bearing capacity of the model was performed with three schemes. Finally, the strengthening mechanism of varying anchoring methods was validated. The research findings in this paper may provide theoretical guidelines for the design and construction of bolting support in tunnels.

Stress distribution in a passive fully grouted rock bolts

  • Karanam U. M. Rao;Dasyapu S. K.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.122-128
    • /
    • 2003
  • Rock bolts are widely used as a supplementary roof support system in hard-rock mining since a long time. Since the performance of fully grouted passive bolts depends on bond strength, in the present investigation extensive laboratory pull-out as well as push-out tests were conducted varying the bolt diameter, length and cement-water mixing ratios of grout. The load-displacement curves were developed and were verified with the numerical results obtained from finite element analysis using ALGOR software. Numerical models were validated for push-out tests and a detailed analysis was carried out to know the displacement, stress, strain distribution along the bolt.

  • PDF